奇异扰动优化跟踪问题

IF 0.8 4区 数学 Q2 MATHEMATICS
V. A. Sobolev
{"title":"奇异扰动优化跟踪问题","authors":"V. A. Sobolev","doi":"10.1134/s0012266124040116","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider a singularly perturbed optimal tracking problem with a given reference path\nin the case of incomplete information about the state vector in the presence of exogenous\ndisturbances. To analyze the differential equations that arise when solving this problem, we use\nthe decomposition method, which is based on the technique of integral manifolds of fast and slow\nmotions.\n</p>","PeriodicalId":50580,"journal":{"name":"Differential Equations","volume":"68 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singularly Perturbed Optimal Tracking Problem\",\"authors\":\"V. A. Sobolev\",\"doi\":\"10.1134/s0012266124040116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We consider a singularly perturbed optimal tracking problem with a given reference path\\nin the case of incomplete information about the state vector in the presence of exogenous\\ndisturbances. To analyze the differential equations that arise when solving this problem, we use\\nthe decomposition method, which is based on the technique of integral manifolds of fast and slow\\nmotions.\\n</p>\",\"PeriodicalId\":50580,\"journal\":{\"name\":\"Differential Equations\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266124040116\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124040116","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑了在存在外生扰动的状态向量信息不完整的情况下,一个具有给定参考路径的奇异扰动最优跟踪问题。为了分析求解该问题时产生的微分方程,我们使用了基于快慢运动积分流形技术的分解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singularly Perturbed Optimal Tracking Problem

Abstract

We consider a singularly perturbed optimal tracking problem with a given reference path in the case of incomplete information about the state vector in the presence of exogenous disturbances. To analyze the differential equations that arise when solving this problem, we use the decomposition method, which is based on the technique of integral manifolds of fast and slow motions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differential Equations
Differential Equations 数学-数学
CiteScore
1.30
自引率
33.30%
发文量
72
审稿时长
3-8 weeks
期刊介绍: Differential Equations is a journal devoted to differential equations and the associated integral equations. The journal publishes original articles by authors from all countries and accepts manuscripts in English and Russian. The topics of the journal cover ordinary differential equations, partial differential equations, spectral theory of differential operators, integral and integral–differential equations, difference equations and their applications in control theory, mathematical modeling, shell theory, informatics, and oscillation theory. The journal is published in collaboration with the Department of Mathematics and the Division of Nanotechnologies and Information Technologies of the Russian Academy of Sciences and the Institute of Mathematics of the National Academy of Sciences of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信