带有两个非线性项的波方程反问题

Pub Date : 2024-07-30 DOI:10.1134/s0012266124040074
V. G. Romanov
{"title":"带有两个非线性项的波方程反问题","authors":"V. G. Romanov","doi":"10.1134/s0012266124040074","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> An inverse problem for a second-order hyperbolic equation containing two nonlinear terms\nis studied. The problem is to reconstruct the coefficients of the nonlinearities. The Cauchy\nproblem with a point source located at a point <span>\\(\\mathbf {y}\\)</span> is\nconsidered. This point is a parameter of the problem and successively runs over a spherical surface\n<span>\\(S \\)</span>. It is assumed that the desired coefficients are\nnonzero only in a domain lying inside <span>\\(S\\)</span>. The trace of the\nsolution of the Cauchy problem on <span>\\(S\\)</span> is specified for all\npossible values of <span>\\( \\mathbf {y}\\)</span> and for times close to the arrival of\nthe wave from the source to the points on the surface <span>\\(S \\)</span>; this allows reducing the inverse problem under\nconsideration to two successively solved problems of integral geometry. Solution stability estimates\nare found for these two problems.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Inverse Problem for the Wave Equation with Two Nonlinear Terms\",\"authors\":\"V. G. Romanov\",\"doi\":\"10.1134/s0012266124040074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> An inverse problem for a second-order hyperbolic equation containing two nonlinear terms\\nis studied. The problem is to reconstruct the coefficients of the nonlinearities. The Cauchy\\nproblem with a point source located at a point <span>\\\\(\\\\mathbf {y}\\\\)</span> is\\nconsidered. This point is a parameter of the problem and successively runs over a spherical surface\\n<span>\\\\(S \\\\)</span>. It is assumed that the desired coefficients are\\nnonzero only in a domain lying inside <span>\\\\(S\\\\)</span>. The trace of the\\nsolution of the Cauchy problem on <span>\\\\(S\\\\)</span> is specified for all\\npossible values of <span>\\\\( \\\\mathbf {y}\\\\)</span> and for times close to the arrival of\\nthe wave from the source to the points on the surface <span>\\\\(S \\\\)</span>; this allows reducing the inverse problem under\\nconsideration to two successively solved problems of integral geometry. Solution stability estimates\\nare found for these two problems.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266124040074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124040074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了含有两个非线性项的二阶双曲方程的逆问题。问题在于重建非线性系数。考虑的是点源位于点 \(\mathbf {y}\) 的 Cauchy 问题。该点是问题的一个参数,并连续在一个球面(S)上运行。假设所需的系数只在(S)内的域中为零。针对所有可能的 \( \mathbf {y}\) 值,以及波从源头到达表面 \(S\) 上各点的时间,指定了 Cauchy 问题在 \(S\) 上的解的迹线;这使得所考虑的逆问题简化为两个连续求解的积分几何问题。为这两个问题找到了求解稳定性估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
An Inverse Problem for the Wave Equation with Two Nonlinear Terms

Abstract

An inverse problem for a second-order hyperbolic equation containing two nonlinear terms is studied. The problem is to reconstruct the coefficients of the nonlinearities. The Cauchy problem with a point source located at a point \(\mathbf {y}\) is considered. This point is a parameter of the problem and successively runs over a spherical surface \(S \). It is assumed that the desired coefficients are nonzero only in a domain lying inside \(S\). The trace of the solution of the Cauchy problem on \(S\) is specified for all possible values of \( \mathbf {y}\) and for times close to the arrival of the wave from the source to the points on the surface \(S \); this allows reducing the inverse problem under consideration to two successively solved problems of integral geometry. Solution stability estimates are found for these two problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信