{"title":"从最基本的认知原则出发,进行基于使用的语法归纳","authors":"Anna Jon-And, Jérôme Michaud","doi":"10.1162/coli_a_00528","DOIUrl":null,"url":null,"abstract":"This study explores the cognitive mechanisms underlying human language acquisition through grammar induction by a minimal cognitive architecture, with a short and flexible sequence memory as its most central feature. We use reinforcement learning for the task of identifying sentences in a stream of words from artificial languages. Results demonstrate the model’s ability to identify frequent and informative multi-word chunks, reproducing characteristics of natural language acquisition. The model successfully navigates varying degrees of linguistic complexity, exposing efficient adaptation to combinatorial challenges through the reuse of sequential patterns. The emergence of parsimonious tree structures suggests an optimization for the sentence identification task, balancing economy and information. The cognitive architecture reflects aspects of human memory systems and decision-making processes, enhancing its cognitive plausibility. While the model exhibits limitations in generalization and semantic representation, its minimalist nature offers insights into some fundamental mechanisms of language learning. Our study demonstrates the power of this simple architecture and stresses the importance of sequence memory in language learning. Since other animals do not seem to have faithful sequence memory, this may be a key to understanding why only humans have developed complex languages.","PeriodicalId":49089,"journal":{"name":"Computational Linguistics","volume":"74 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Usage-based grammar induction from minimal cognitive principles\",\"authors\":\"Anna Jon-And, Jérôme Michaud\",\"doi\":\"10.1162/coli_a_00528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the cognitive mechanisms underlying human language acquisition through grammar induction by a minimal cognitive architecture, with a short and flexible sequence memory as its most central feature. We use reinforcement learning for the task of identifying sentences in a stream of words from artificial languages. Results demonstrate the model’s ability to identify frequent and informative multi-word chunks, reproducing characteristics of natural language acquisition. The model successfully navigates varying degrees of linguistic complexity, exposing efficient adaptation to combinatorial challenges through the reuse of sequential patterns. The emergence of parsimonious tree structures suggests an optimization for the sentence identification task, balancing economy and information. The cognitive architecture reflects aspects of human memory systems and decision-making processes, enhancing its cognitive plausibility. While the model exhibits limitations in generalization and semantic representation, its minimalist nature offers insights into some fundamental mechanisms of language learning. Our study demonstrates the power of this simple architecture and stresses the importance of sequence memory in language learning. Since other animals do not seem to have faithful sequence memory, this may be a key to understanding why only humans have developed complex languages.\",\"PeriodicalId\":49089,\"journal\":{\"name\":\"Computational Linguistics\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Linguistics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/coli_a_00528\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00528","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Usage-based grammar induction from minimal cognitive principles
This study explores the cognitive mechanisms underlying human language acquisition through grammar induction by a minimal cognitive architecture, with a short and flexible sequence memory as its most central feature. We use reinforcement learning for the task of identifying sentences in a stream of words from artificial languages. Results demonstrate the model’s ability to identify frequent and informative multi-word chunks, reproducing characteristics of natural language acquisition. The model successfully navigates varying degrees of linguistic complexity, exposing efficient adaptation to combinatorial challenges through the reuse of sequential patterns. The emergence of parsimonious tree structures suggests an optimization for the sentence identification task, balancing economy and information. The cognitive architecture reflects aspects of human memory systems and decision-making processes, enhancing its cognitive plausibility. While the model exhibits limitations in generalization and semantic representation, its minimalist nature offers insights into some fundamental mechanisms of language learning. Our study demonstrates the power of this simple architecture and stresses the importance of sequence memory in language learning. Since other animals do not seem to have faithful sequence memory, this may be a key to understanding why only humans have developed complex languages.
期刊介绍:
Computational Linguistics is the longest-running publication devoted exclusively to the computational and mathematical properties of language and the design and analysis of natural language processing systems. This highly regarded quarterly offers university and industry linguists, computational linguists, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, and philosophers the latest information about the computational aspects of all the facets of research on language.