{"title":"论平面 Bochner-Riesz 平均值的几乎无处收敛性","authors":"Xiaochun Li, Shukun Wu","doi":"arxiv-2407.20887","DOIUrl":null,"url":null,"abstract":"We demonstrate that the almost everywhere convergence of the planar\nBochner-Riesz means for $L^p$ functions in the optimal range when $5/3\\leq\np\\leq 2$. This is achieved by establishing a sharp $L^{5/3}$ estimate for a\nmaximal operator closely associated with the Bochner-Riesz multiplier operator.\nThe estimate depends on a novel refined $L^2$ estimate, which may be of\nindependent interest.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On almost everywhere convergence of planar Bochner-Riesz mean\",\"authors\":\"Xiaochun Li, Shukun Wu\",\"doi\":\"arxiv-2407.20887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate that the almost everywhere convergence of the planar\\nBochner-Riesz means for $L^p$ functions in the optimal range when $5/3\\\\leq\\np\\\\leq 2$. This is achieved by establishing a sharp $L^{5/3}$ estimate for a\\nmaximal operator closely associated with the Bochner-Riesz multiplier operator.\\nThe estimate depends on a novel refined $L^2$ estimate, which may be of\\nindependent interest.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,当 $5/3\leqp\leq 2$ 时,L^p$ 函数的 PlanarBochner-Riesz means 几乎无处不收敛。这是通过为与波赫纳-里兹乘法算子密切相关的最大算子建立一个尖锐的$L^{5/3}$估计值来实现的。
On almost everywhere convergence of planar Bochner-Riesz mean
We demonstrate that the almost everywhere convergence of the planar
Bochner-Riesz means for $L^p$ functions in the optimal range when $5/3\leq
p\leq 2$. This is achieved by establishing a sharp $L^{5/3}$ estimate for a
maximal operator closely associated with the Bochner-Riesz multiplier operator.
The estimate depends on a novel refined $L^2$ estimate, which may be of
independent interest.