关于布拉斯坎普-李布几何数据普遍性的说明

Neal Bez, Anthony Gauvan, Hiroshi Tsuji
{"title":"关于布拉斯坎普-李布几何数据普遍性的说明","authors":"Neal Bez, Anthony Gauvan, Hiroshi Tsuji","doi":"arxiv-2407.21440","DOIUrl":null,"url":null,"abstract":"Relying substantially on work of Garg, Gurvits, Oliveira and Wigderson, it is\nshown that geometric Brascamp--Lieb data are, in a certain sense, ubiquitous.\nThis addresses a question raised by Bennett and Tao in their recent work on the\nadjoint Brascamp--Lieb inequality.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on ubiquity of geometric Brascamp-Lieb data\",\"authors\":\"Neal Bez, Anthony Gauvan, Hiroshi Tsuji\",\"doi\":\"arxiv-2407.21440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relying substantially on work of Garg, Gurvits, Oliveira and Wigderson, it is\\nshown that geometric Brascamp--Lieb data are, in a certain sense, ubiquitous.\\nThis addresses a question raised by Bennett and Tao in their recent work on the\\nadjoint Brascamp--Lieb inequality.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本论文主要依据 Garg、Gurvits、Oliveira 和 Wigderson 的研究成果,证明了几何布拉什坎普--勒布数据在某种意义上是无处不在的,从而解决了 Bennett 和 Tao 在他们最近关于联合布拉什坎普--勒布不等式的研究中提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on ubiquity of geometric Brascamp-Lieb data
Relying substantially on work of Garg, Gurvits, Oliveira and Wigderson, it is shown that geometric Brascamp--Lieb data are, in a certain sense, ubiquitous. This addresses a question raised by Bennett and Tao in their recent work on the adjoint Brascamp--Lieb inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信