{"title":"关于布拉斯坎普-李布几何数据普遍性的说明","authors":"Neal Bez, Anthony Gauvan, Hiroshi Tsuji","doi":"arxiv-2407.21440","DOIUrl":null,"url":null,"abstract":"Relying substantially on work of Garg, Gurvits, Oliveira and Wigderson, it is\nshown that geometric Brascamp--Lieb data are, in a certain sense, ubiquitous.\nThis addresses a question raised by Bennett and Tao in their recent work on the\nadjoint Brascamp--Lieb inequality.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on ubiquity of geometric Brascamp-Lieb data\",\"authors\":\"Neal Bez, Anthony Gauvan, Hiroshi Tsuji\",\"doi\":\"arxiv-2407.21440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relying substantially on work of Garg, Gurvits, Oliveira and Wigderson, it is\\nshown that geometric Brascamp--Lieb data are, in a certain sense, ubiquitous.\\nThis addresses a question raised by Bennett and Tao in their recent work on the\\nadjoint Brascamp--Lieb inequality.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本论文主要依据 Garg、Gurvits、Oliveira 和 Wigderson 的研究成果,证明了几何布拉什坎普--勒布数据在某种意义上是无处不在的,从而解决了 Bennett 和 Tao 在他们最近关于联合布拉什坎普--勒布不等式的研究中提出的一个问题。
A note on ubiquity of geometric Brascamp-Lieb data
Relying substantially on work of Garg, Gurvits, Oliveira and Wigderson, it is
shown that geometric Brascamp--Lieb data are, in a certain sense, ubiquitous.
This addresses a question raised by Bennett and Tao in their recent work on the
adjoint Brascamp--Lieb inequality.