Ahmet Emre Cetin, Erhan Akdogan, Suden Battal, Ceyhun Ibolar
{"title":"基于机器学习的驾驶员驾驶姿态实时识别系统","authors":"Ahmet Emre Cetin, Erhan Akdogan, Suden Battal, Ceyhun Ibolar","doi":"10.1177/09544070241265398","DOIUrl":null,"url":null,"abstract":"The detection of driver distractions is exceptionally important for driving safety. Driver distraction can originate from various sources such as external tasks (e.g., texting or eating) or mental states (e.g., sleepiness, tiredness, anger, and tension). To detect these conditions, most of the previous studies were based on vision-based techniques. These techniques are affected by environmental factors (e.g., day, night, and facial accessories such as glasses and hats). However, the steering wheel is an interface that provides a direct relationship between the driver and vehicle. The driver’s interaction can effectively reflect this behavior and mental state. This study introduced a new method for detecting driver distractions by utilizing force/torque (F/T) sensor data extracted from the steering wheel. An experimental setup was designed and developed to measure the accuracy of the proposed method. To validate the strategy, a machine learning-based algorithm was developed. It demonstrated remarkable performance in determining the position of the driver’s hand on the steering wheel and in inferring with high precision the hand the driver uses to operate the vehicle. The method produced accurate results in all the grip ranges that could be held by the driver within the range of 0°–360°. The support vector machine (SVM) method was used in machine learning. It predicted with a 91.1% accuracy rate.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based real time identification of driver posture during driving\",\"authors\":\"Ahmet Emre Cetin, Erhan Akdogan, Suden Battal, Ceyhun Ibolar\",\"doi\":\"10.1177/09544070241265398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of driver distractions is exceptionally important for driving safety. Driver distraction can originate from various sources such as external tasks (e.g., texting or eating) or mental states (e.g., sleepiness, tiredness, anger, and tension). To detect these conditions, most of the previous studies were based on vision-based techniques. These techniques are affected by environmental factors (e.g., day, night, and facial accessories such as glasses and hats). However, the steering wheel is an interface that provides a direct relationship between the driver and vehicle. The driver’s interaction can effectively reflect this behavior and mental state. This study introduced a new method for detecting driver distractions by utilizing force/torque (F/T) sensor data extracted from the steering wheel. An experimental setup was designed and developed to measure the accuracy of the proposed method. To validate the strategy, a machine learning-based algorithm was developed. It demonstrated remarkable performance in determining the position of the driver’s hand on the steering wheel and in inferring with high precision the hand the driver uses to operate the vehicle. The method produced accurate results in all the grip ranges that could be held by the driver within the range of 0°–360°. The support vector machine (SVM) method was used in machine learning. It predicted with a 91.1% accuracy rate.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241265398\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241265398","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Machine learning-based real time identification of driver posture during driving
The detection of driver distractions is exceptionally important for driving safety. Driver distraction can originate from various sources such as external tasks (e.g., texting or eating) or mental states (e.g., sleepiness, tiredness, anger, and tension). To detect these conditions, most of the previous studies were based on vision-based techniques. These techniques are affected by environmental factors (e.g., day, night, and facial accessories such as glasses and hats). However, the steering wheel is an interface that provides a direct relationship between the driver and vehicle. The driver’s interaction can effectively reflect this behavior and mental state. This study introduced a new method for detecting driver distractions by utilizing force/torque (F/T) sensor data extracted from the steering wheel. An experimental setup was designed and developed to measure the accuracy of the proposed method. To validate the strategy, a machine learning-based algorithm was developed. It demonstrated remarkable performance in determining the position of the driver’s hand on the steering wheel and in inferring with high precision the hand the driver uses to operate the vehicle. The method produced accurate results in all the grip ranges that could be held by the driver within the range of 0°–360°. The support vector machine (SVM) method was used in machine learning. It predicted with a 91.1% accuracy rate.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.