作为泰特向量空间的拉比诺维兹浮同调

Kai Cieliebak, Alexandru Oancea
{"title":"作为泰特向量空间的拉比诺维兹浮同调","authors":"Kai Cieliebak, Alexandru Oancea","doi":"arxiv-2407.21741","DOIUrl":null,"url":null,"abstract":"We show that the category of linearly topologized vector spaces over discrete\nfields constitutes the correct framework for algebraic structures on Floer\nhomologies with field coefficients. Our case in point is the Poincar\\'e duality\ntheorem for Rabinowitz Floer homology. We prove that Rabinowitz Floer homology\nis a locally linearly compact vector space in the sense of Lefschetz, or,\nequivalently, a Tate vector space in the sense of Beilinson-Feigin-Mazur.\nPoincar\\'e duality and the graded Frobenius algebra structure on Rabinowitz\nFloer homology then hold in the topological sense. Along the way, we develop in\na largely self-contained manner the theory of linearly topologized vector\nspaces, with special emphasis on duality and completed tensor products,\ncomplementing results of Beilinson-Drinfeld, Beilinson, Rojas, Positselski, and\nEsposito-Penkov.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"124 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rabinowitz Floer homology as a Tate vector space\",\"authors\":\"Kai Cieliebak, Alexandru Oancea\",\"doi\":\"arxiv-2407.21741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the category of linearly topologized vector spaces over discrete\\nfields constitutes the correct framework for algebraic structures on Floer\\nhomologies with field coefficients. Our case in point is the Poincar\\\\'e duality\\ntheorem for Rabinowitz Floer homology. We prove that Rabinowitz Floer homology\\nis a locally linearly compact vector space in the sense of Lefschetz, or,\\nequivalently, a Tate vector space in the sense of Beilinson-Feigin-Mazur.\\nPoincar\\\\'e duality and the graded Frobenius algebra structure on Rabinowitz\\nFloer homology then hold in the topological sense. Along the way, we develop in\\na largely self-contained manner the theory of linearly topologized vector\\nspaces, with special emphasis on duality and completed tensor products,\\ncomplementing results of Beilinson-Drinfeld, Beilinson, Rojas, Positselski, and\\nEsposito-Penkov.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,离散场上线性拓扑化向量空间的范畴构成了具有场系数的弗洛尔同调代数结构的正确框架。我们的案例是拉比诺维兹浮同调的 Poincar\'e 对偶定理。我们证明了拉比诺维兹-弗洛尔同调是列夫谢尔茨意义上的局部线性紧凑向量空间,或者,等价地,是贝林松-费金-马祖尔意义上的泰特向量空间。在此过程中,我们以基本自足的方式发展了线性拓扑向量空间理论,特别强调对偶性和完成张量积,补充了贝林森-德林费尔德、贝林森、罗哈斯、波西泽尔斯基和埃斯波西托-彭可夫的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rabinowitz Floer homology as a Tate vector space
We show that the category of linearly topologized vector spaces over discrete fields constitutes the correct framework for algebraic structures on Floer homologies with field coefficients. Our case in point is the Poincar\'e duality theorem for Rabinowitz Floer homology. We prove that Rabinowitz Floer homology is a locally linearly compact vector space in the sense of Lefschetz, or, equivalently, a Tate vector space in the sense of Beilinson-Feigin-Mazur. Poincar\'e duality and the graded Frobenius algebra structure on Rabinowitz Floer homology then hold in the topological sense. Along the way, we develop in a largely self-contained manner the theory of linearly topologized vector spaces, with special emphasis on duality and completed tensor products, complementing results of Beilinson-Drinfeld, Beilinson, Rojas, Positselski, and Esposito-Penkov.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信