B_4$ 的布劳表示和有理投影面的量子化

Perrine Jouteur
{"title":"B_4$ 的布劳表示和有理投影面的量子化","authors":"Perrine Jouteur","doi":"arxiv-2407.20645","DOIUrl":null,"url":null,"abstract":"The braid group $B_4$ naturally acts on the rational projective plane\n$\\mathbb{P}^2(\\mathbb{Q})$, this action corresponds to the classical integral\nreduced Burau representation of $B_4$. The first result of this paper is a\nclassification of the orbits of this action. The Burau representation then\ndefines an action of $B_4$ on $\\mathbb{P}^2(\\mathbb{Z}(q))$, where $q$ is a\nformal parameter and $\\mathbb{Z}(q)$ is the field of rational functions in $q$\nwith integer coefficients. We study orbits of the $B_4$-action on\n$\\mathbb{P}^2(\\mathbb{Z}(q))$, and show existence of embeddings of the\n$q$-deformed projective line $\\mathbb{P}^1(\\mathbb{Z}(q))$ that precisely\ncorrespond to the notion of $q$-rationals due to Morier-Genoud and Ovsienko.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Burau representation of $B_4$ and quantization of the rational projective plane\",\"authors\":\"Perrine Jouteur\",\"doi\":\"arxiv-2407.20645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The braid group $B_4$ naturally acts on the rational projective plane\\n$\\\\mathbb{P}^2(\\\\mathbb{Q})$, this action corresponds to the classical integral\\nreduced Burau representation of $B_4$. The first result of this paper is a\\nclassification of the orbits of this action. The Burau representation then\\ndefines an action of $B_4$ on $\\\\mathbb{P}^2(\\\\mathbb{Z}(q))$, where $q$ is a\\nformal parameter and $\\\\mathbb{Z}(q)$ is the field of rational functions in $q$\\nwith integer coefficients. We study orbits of the $B_4$-action on\\n$\\\\mathbb{P}^2(\\\\mathbb{Z}(q))$, and show existence of embeddings of the\\n$q$-deformed projective line $\\\\mathbb{P}^1(\\\\mathbb{Z}(q))$ that precisely\\ncorrespond to the notion of $q$-rationals due to Morier-Genoud and Ovsienko.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

辫子群 $B_4$ 自然地作用于有理投影面$\mathbb{P}^2(\mathbb{Q})$,这个作用对应于 $B_4$ 的经典积分还原布劳表示。本文的第一个结果是对这一作用的轨道进行分类。布劳表示定义了 $B_4$ 在 $\mathbb{P}^2(\mathbb{Z}(q))$ 上的作用,其中 $q$ 是形式参数,$\mathbb{Z}(q)$ 是在 $q$ 中具有整数系数的有理函数域。我们研究了$B_4$作用在$mathbb{P}^2(\mathbb{Z}(q))$上的轨道,并证明了$q$变形投影线$mathbb{P}^1(\mathbb{Z}(q))$的嵌入的存在,它精确地对应于莫里埃-杰努德(Morier-Genoud)和奥夫先科(Ovsienko)提出的$q$有理概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Burau representation of $B_4$ and quantization of the rational projective plane
The braid group $B_4$ naturally acts on the rational projective plane $\mathbb{P}^2(\mathbb{Q})$, this action corresponds to the classical integral reduced Burau representation of $B_4$. The first result of this paper is a classification of the orbits of this action. The Burau representation then defines an action of $B_4$ on $\mathbb{P}^2(\mathbb{Z}(q))$, where $q$ is a formal parameter and $\mathbb{Z}(q)$ is the field of rational functions in $q$ with integer coefficients. We study orbits of the $B_4$-action on $\mathbb{P}^2(\mathbb{Z}(q))$, and show existence of embeddings of the $q$-deformed projective line $\mathbb{P}^1(\mathbb{Z}(q))$ that precisely correspond to the notion of $q$-rationals due to Morier-Genoud and Ovsienko.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信