{"title":"论有限阿贝尔群中具有较少后继和的序列","authors":"Jiangtao Peng, Yue Sun","doi":"10.1007/s00373-024-02818-0","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a finite abelian group and <i>S</i> a sequence with elements of <i>G</i>. Let |<i>S</i>| denote the length of <i>S</i>. Let <span>\\(\\mathrm {\\Sigma }(S)\\subset G\\)</span> denote the set of group elements which can be expressed as a sum of a nonempty subsequence of <i>S</i>. It is known that if <span>\\(0\\not \\in \\mathrm {\\Sigma }(S)\\)</span> then <span>\\(|\\mathrm {\\Sigma }(S)|\\ge |S|\\)</span>. In this paper, we study the sequence <i>S</i> satisfying <span>\\(|\\mathrm {\\Sigma }(S)\\cup \\{0\\}|\\le |S|\\)</span>. We prove that if <span>\\(|\\mathrm {\\Sigma }(S)\\cup \\{0\\}|\\)</span> is a prime number <i>p</i>, then <span>\\(\\langle S\\rangle \\)</span> is a cyclic group of <i>p</i> elements.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"19 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Sequence with Fewer Subsequence Sums in Finite Abelian Groups\",\"authors\":\"Jiangtao Peng, Yue Sun\",\"doi\":\"10.1007/s00373-024-02818-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a finite abelian group and <i>S</i> a sequence with elements of <i>G</i>. Let |<i>S</i>| denote the length of <i>S</i>. Let <span>\\\\(\\\\mathrm {\\\\Sigma }(S)\\\\subset G\\\\)</span> denote the set of group elements which can be expressed as a sum of a nonempty subsequence of <i>S</i>. It is known that if <span>\\\\(0\\\\not \\\\in \\\\mathrm {\\\\Sigma }(S)\\\\)</span> then <span>\\\\(|\\\\mathrm {\\\\Sigma }(S)|\\\\ge |S|\\\\)</span>. In this paper, we study the sequence <i>S</i> satisfying <span>\\\\(|\\\\mathrm {\\\\Sigma }(S)\\\\cup \\\\{0\\\\}|\\\\le |S|\\\\)</span>. We prove that if <span>\\\\(|\\\\mathrm {\\\\Sigma }(S)\\\\cup \\\\{0\\\\}|\\\\)</span> is a prime number <i>p</i>, then <span>\\\\(\\\\langle S\\\\rangle \\\\)</span> is a cyclic group of <i>p</i> elements.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02818-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02818-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 G 是一个有限无边群,S 是一个包含 G 元素的序列。让 \(\mathrm {\Sigma }(S)\subset G\) 表示可以表示为 S 的非空子序列之和的群元素集合。已知如果 \(0\not \in \mathrm {\Sigma }(S)\) 那么 \(|\mathrm {\Sigma }(S)|\ge |S|\)。在本文中,我们研究满足 \(|\mathrm {\Sigma }(S)|cup \{0\}|le |S|\) 的序列 S。我们证明,如果 \(|mathrm {\Sigma }(S)\cup \{0/}|\)是一个素数 p,那么 \(\langle S\rangle \)就是一个包含 p 个元素的循环群。
On the Sequence with Fewer Subsequence Sums in Finite Abelian Groups
Let G be a finite abelian group and S a sequence with elements of G. Let |S| denote the length of S. Let \(\mathrm {\Sigma }(S)\subset G\) denote the set of group elements which can be expressed as a sum of a nonempty subsequence of S. It is known that if \(0\not \in \mathrm {\Sigma }(S)\) then \(|\mathrm {\Sigma }(S)|\ge |S|\). In this paper, we study the sequence S satisfying \(|\mathrm {\Sigma }(S)\cup \{0\}|\le |S|\). We prove that if \(|\mathrm {\Sigma }(S)\cup \{0\}|\) is a prime number p, then \(\langle S\rangle \) is a cyclic group of p elements.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.