{"title":"彩虹小树的加莱-拉姆齐多重性","authors":"Xueliang Li, Yuan Si","doi":"10.1007/s00373-024-02819-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i>, <i>H</i> be two non-empty graphs and <i>k</i> be a positive integer. The Gallai-Ramsey number <span>\\({\\text {gr}}_k(G:H)\\)</span> is defined as the minimum positive integer <i>N</i> such that for all <span>\\(n\\ge N\\)</span>, every <i>k</i>-edge-coloring of <span>\\(K_n\\)</span> contains either a rainbow subgraph <i>G</i> or a monochromatic subgraph <i>H</i>. The Gallai-Ramsey multiplicity <span>\\({\\text {GM}}_k(G:H)\\)</span> is defined as the minimum total number of rainbow subgraphs <i>G</i> and monochromatic subgraphs <i>H</i> for all <i>k</i>-edge-colored <span>\\(K_{{\\text {gr}}_k(G:H)}\\)</span>. In this paper, we get some exact values of the Gallai-Ramsey multiplicity for rainbow small trees versus general monochromatic graphs under a sufficiently large number of colors. We also study the bipartite Gallai-Ramsey multiplicity.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"15 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gallai-Ramsey Multiplicity for Rainbow Small Trees\",\"authors\":\"Xueliang Li, Yuan Si\",\"doi\":\"10.1007/s00373-024-02819-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i>, <i>H</i> be two non-empty graphs and <i>k</i> be a positive integer. The Gallai-Ramsey number <span>\\\\({\\\\text {gr}}_k(G:H)\\\\)</span> is defined as the minimum positive integer <i>N</i> such that for all <span>\\\\(n\\\\ge N\\\\)</span>, every <i>k</i>-edge-coloring of <span>\\\\(K_n\\\\)</span> contains either a rainbow subgraph <i>G</i> or a monochromatic subgraph <i>H</i>. The Gallai-Ramsey multiplicity <span>\\\\({\\\\text {GM}}_k(G:H)\\\\)</span> is defined as the minimum total number of rainbow subgraphs <i>G</i> and monochromatic subgraphs <i>H</i> for all <i>k</i>-edge-colored <span>\\\\(K_{{\\\\text {gr}}_k(G:H)}\\\\)</span>. In this paper, we get some exact values of the Gallai-Ramsey multiplicity for rainbow small trees versus general monochromatic graphs under a sufficiently large number of colors. We also study the bipartite Gallai-Ramsey multiplicity.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02819-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02819-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
假设 G、H 是两个非空图形,k 是一个正整数。加莱-拉姆齐数({\text {gr}}_k(G:H)\)被定义为最小正整数 N,对于所有的 \(n\ge N\) ,\(K_n\) 的每一个 k 边着色要么包含一个彩虹子图 G,要么包含一个单色子图 H。Gallai-Ramsey 多重性 \({\text {GM}}_k(G:H)\) 被定义为所有 k 边着色的 \(K_{\text {gr}}_k(G:H)}\) 的彩虹子图 G 和单色子图 H 的最小总数。在本文中,我们得到了彩虹小树与一般单色图在足够多颜色下的伽来-拉姆齐乘数的一些精确值。我们还研究了双方格 Gallai-Ramsey 倍性。
Gallai-Ramsey Multiplicity for Rainbow Small Trees
Let G, H be two non-empty graphs and k be a positive integer. The Gallai-Ramsey number \({\text {gr}}_k(G:H)\) is defined as the minimum positive integer N such that for all \(n\ge N\), every k-edge-coloring of \(K_n\) contains either a rainbow subgraph G or a monochromatic subgraph H. The Gallai-Ramsey multiplicity \({\text {GM}}_k(G:H)\) is defined as the minimum total number of rainbow subgraphs G and monochromatic subgraphs H for all k-edge-colored \(K_{{\text {gr}}_k(G:H)}\). In this paper, we get some exact values of the Gallai-Ramsey multiplicity for rainbow small trees versus general monochromatic graphs under a sufficiently large number of colors. We also study the bipartite Gallai-Ramsey multiplicity.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.