彩虹小树的加莱-拉姆齐多重性

IF 0.6 4区 数学 Q3 MATHEMATICS
Xueliang Li, Yuan Si
{"title":"彩虹小树的加莱-拉姆齐多重性","authors":"Xueliang Li, Yuan Si","doi":"10.1007/s00373-024-02819-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i>, <i>H</i> be two non-empty graphs and <i>k</i> be a positive integer. The Gallai-Ramsey number <span>\\({\\text {gr}}_k(G:H)\\)</span> is defined as the minimum positive integer <i>N</i> such that for all <span>\\(n\\ge N\\)</span>, every <i>k</i>-edge-coloring of <span>\\(K_n\\)</span> contains either a rainbow subgraph <i>G</i> or a monochromatic subgraph <i>H</i>. The Gallai-Ramsey multiplicity <span>\\({\\text {GM}}_k(G:H)\\)</span> is defined as the minimum total number of rainbow subgraphs <i>G</i> and monochromatic subgraphs <i>H</i> for all <i>k</i>-edge-colored <span>\\(K_{{\\text {gr}}_k(G:H)}\\)</span>. In this paper, we get some exact values of the Gallai-Ramsey multiplicity for rainbow small trees versus general monochromatic graphs under a sufficiently large number of colors. We also study the bipartite Gallai-Ramsey multiplicity.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gallai-Ramsey Multiplicity for Rainbow Small Trees\",\"authors\":\"Xueliang Li, Yuan Si\",\"doi\":\"10.1007/s00373-024-02819-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i>, <i>H</i> be two non-empty graphs and <i>k</i> be a positive integer. The Gallai-Ramsey number <span>\\\\({\\\\text {gr}}_k(G:H)\\\\)</span> is defined as the minimum positive integer <i>N</i> such that for all <span>\\\\(n\\\\ge N\\\\)</span>, every <i>k</i>-edge-coloring of <span>\\\\(K_n\\\\)</span> contains either a rainbow subgraph <i>G</i> or a monochromatic subgraph <i>H</i>. The Gallai-Ramsey multiplicity <span>\\\\({\\\\text {GM}}_k(G:H)\\\\)</span> is defined as the minimum total number of rainbow subgraphs <i>G</i> and monochromatic subgraphs <i>H</i> for all <i>k</i>-edge-colored <span>\\\\(K_{{\\\\text {gr}}_k(G:H)}\\\\)</span>. In this paper, we get some exact values of the Gallai-Ramsey multiplicity for rainbow small trees versus general monochromatic graphs under a sufficiently large number of colors. We also study the bipartite Gallai-Ramsey multiplicity.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02819-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02819-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 G、H 是两个非空图形,k 是一个正整数。加莱-拉姆齐数({\text {gr}}_k(G:H)\)被定义为最小正整数 N,对于所有的 \(n\ge N\) ,\(K_n\) 的每一个 k 边着色要么包含一个彩虹子图 G,要么包含一个单色子图 H。Gallai-Ramsey 多重性 \({\text {GM}}_k(G:H)\) 被定义为所有 k 边着色的 \(K_{\text {gr}}_k(G:H)}\) 的彩虹子图 G 和单色子图 H 的最小总数。在本文中,我们得到了彩虹小树与一般单色图在足够多颜色下的伽来-拉姆齐乘数的一些精确值。我们还研究了双方格 Gallai-Ramsey 倍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gallai-Ramsey Multiplicity for Rainbow Small Trees

Let GH be two non-empty graphs and k be a positive integer. The Gallai-Ramsey number \({\text {gr}}_k(G:H)\) is defined as the minimum positive integer N such that for all \(n\ge N\), every k-edge-coloring of \(K_n\) contains either a rainbow subgraph G or a monochromatic subgraph H. The Gallai-Ramsey multiplicity \({\text {GM}}_k(G:H)\) is defined as the minimum total number of rainbow subgraphs G and monochromatic subgraphs H for all k-edge-colored \(K_{{\text {gr}}_k(G:H)}\). In this paper, we get some exact values of the Gallai-Ramsey multiplicity for rainbow small trees versus general monochromatic graphs under a sufficiently large number of colors. We also study the bipartite Gallai-Ramsey multiplicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信