基于库普曼算子稀疏近似的系统识别

Tiantian Lu, Jinqian Feng, Jin Su, Youpan Han, Qin Guo
{"title":"基于库普曼算子稀疏近似的系统识别","authors":"Tiantian Lu, Jinqian Feng, Jin Su, Youpan Han, Qin Guo","doi":"10.1140/epjs/s11734-024-01264-6","DOIUrl":null,"url":null,"abstract":"<p>A data-driven system identification method based on the Koopman operator with sparse optimization is proposed. Koopman theory provides insights into transforming nonlinear systems into a higher-dimensional measurement function space dominated by a linear Koopman operator, which enhances system identification. The effective data-driven approach of the eigenfunctions of the Koopman operator is becoming a challenging topic. Compared with the state-of-the-art methods, this paper introduces a sparse basis selection algorithm to enhance the implementation of the compressed Koopman operator. The validity and accuracy of the method are demonstrated in a 2D Duffing system and a 3D chaotic Lorenz system. The method is also robust to noisy data.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System identification based on sparse approximation of Koopman operator\",\"authors\":\"Tiantian Lu, Jinqian Feng, Jin Su, Youpan Han, Qin Guo\",\"doi\":\"10.1140/epjs/s11734-024-01264-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A data-driven system identification method based on the Koopman operator with sparse optimization is proposed. Koopman theory provides insights into transforming nonlinear systems into a higher-dimensional measurement function space dominated by a linear Koopman operator, which enhances system identification. The effective data-driven approach of the eigenfunctions of the Koopman operator is becoming a challenging topic. Compared with the state-of-the-art methods, this paper introduces a sparse basis selection algorithm to enhance the implementation of the compressed Koopman operator. The validity and accuracy of the method are demonstrated in a 2D Duffing system and a 3D chaotic Lorenz system. The method is also robust to noisy data.</p>\",\"PeriodicalId\":501403,\"journal\":{\"name\":\"The European Physical Journal Special Topics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Special Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1140/epjs/s11734-024-01264-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01264-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于库普曼算子和稀疏优化的数据驱动型系统识别方法。库普曼理论为将非线性系统转换到由线性库普曼算子支配的高维测量函数空间提供了见解,从而增强了系统识别能力。库普曼算子特征函数的有效数据驱动方法正成为一个具有挑战性的课题。与最先进的方法相比,本文引入了一种稀疏基选择算法,以增强压缩库普曼算子的实现。该方法的有效性和准确性在二维达芬系统和三维混沌洛伦兹系统中得到了验证。该方法对噪声数据也具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

System identification based on sparse approximation of Koopman operator

System identification based on sparse approximation of Koopman operator

A data-driven system identification method based on the Koopman operator with sparse optimization is proposed. Koopman theory provides insights into transforming nonlinear systems into a higher-dimensional measurement function space dominated by a linear Koopman operator, which enhances system identification. The effective data-driven approach of the eigenfunctions of the Koopman operator is becoming a challenging topic. Compared with the state-of-the-art methods, this paper introduces a sparse basis selection algorithm to enhance the implementation of the compressed Koopman operator. The validity and accuracy of the method are demonstrated in a 2D Duffing system and a 3D chaotic Lorenz system. The method is also robust to noisy data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信