对挤压板之间具有同质异相反应的电渗流和磁流体动力学流的参数分析

Wajid Ullah Jan, Muhammad Farooq, Rehan Ali Shah, Aamir Khan, Rashid Jan, Imtiaz Ahmad, Sahar Ahmed Idris
{"title":"对挤压板之间具有同质异相反应的电渗流和磁流体动力学流的参数分析","authors":"Wajid Ullah Jan, Muhammad Farooq, Rehan Ali Shah, Aamir Khan, Rashid Jan, Imtiaz Ahmad, Sahar Ahmed Idris","doi":"10.1140/epjs/s11734-024-01271-7","DOIUrl":null,"url":null,"abstract":"<p>The Poisson–Boltzmann equation characterizes the internal electric potential in electroosmotic and magnetohydrodynamic (MHD) processes, under the assumptions of thermodynamic equilibrium and negligible fluid flow effects. However, for significant convective ion transport, the Nernst–Planck equation is requisite. This study develops predictive models for electroosmotic and MHD flows between squeezing plates, where convective ion transport is minimal. The partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs) using similarity transformations and solved analytically via the homotopy analysis method (HAM). The HAM results, validated against the numerical solver BVP4c, exhibit strong concordance. Various physical effects are elucidated through graphical and tabular representations, revealing that squeezing the plates reduces electroosmotic flow profiles while increasing the magnetic Reynolds number in both homogeneous and heterogeneous reactions.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A parametric analysis of electroosmotic and magnetohydrodynamic flows with homogeneous-heterogeneous reactions between squeezing plates\",\"authors\":\"Wajid Ullah Jan, Muhammad Farooq, Rehan Ali Shah, Aamir Khan, Rashid Jan, Imtiaz Ahmad, Sahar Ahmed Idris\",\"doi\":\"10.1140/epjs/s11734-024-01271-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Poisson–Boltzmann equation characterizes the internal electric potential in electroosmotic and magnetohydrodynamic (MHD) processes, under the assumptions of thermodynamic equilibrium and negligible fluid flow effects. However, for significant convective ion transport, the Nernst–Planck equation is requisite. This study develops predictive models for electroosmotic and MHD flows between squeezing plates, where convective ion transport is minimal. The partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs) using similarity transformations and solved analytically via the homotopy analysis method (HAM). The HAM results, validated against the numerical solver BVP4c, exhibit strong concordance. Various physical effects are elucidated through graphical and tabular representations, revealing that squeezing the plates reduces electroosmotic flow profiles while increasing the magnetic Reynolds number in both homogeneous and heterogeneous reactions.</p>\",\"PeriodicalId\":501403,\"journal\":{\"name\":\"The European Physical Journal Special Topics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Special Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1140/epjs/s11734-024-01271-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01271-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在热力学平衡和流体流动效应可忽略不计的假设条件下,泊松-玻尔兹曼方程描述了电渗和磁流体动力学(MHD)过程中的内部电动势。然而,对于重要的对流离子传输,则需要使用 Nernst-Planck 方程。本研究建立了挤压板之间电渗和 MHD 流动的预测模型,在这种情况下,对流离子传输是最小的。利用相似变换将偏微分方程(PDE)转换为常微分方程(ODE),并通过同调分析方法(HAM)进行分析求解。同调分析法的结果与数值求解器 BVP4c 进行了验证,显示出很强的一致性。通过图形和表格阐明了各种物理效应,揭示了在均相和异相反应中,挤压板可减少电渗流剖面,同时增加磁雷诺数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A parametric analysis of electroosmotic and magnetohydrodynamic flows with homogeneous-heterogeneous reactions between squeezing plates

A parametric analysis of electroosmotic and magnetohydrodynamic flows with homogeneous-heterogeneous reactions between squeezing plates

The Poisson–Boltzmann equation characterizes the internal electric potential in electroosmotic and magnetohydrodynamic (MHD) processes, under the assumptions of thermodynamic equilibrium and negligible fluid flow effects. However, for significant convective ion transport, the Nernst–Planck equation is requisite. This study develops predictive models for electroosmotic and MHD flows between squeezing plates, where convective ion transport is minimal. The partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs) using similarity transformations and solved analytically via the homotopy analysis method (HAM). The HAM results, validated against the numerical solver BVP4c, exhibit strong concordance. Various physical effects are elucidated through graphical and tabular representations, revealing that squeezing the plates reduces electroosmotic flow profiles while increasing the magnetic Reynolds number in both homogeneous and heterogeneous reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信