带有疫苗接种和时间延迟的分数流行病 SEIR 模型分析

Sara Soulaimani, Abdelilah Kaddar, Fathalla A. Rihan
{"title":"带有疫苗接种和时间延迟的分数流行病 SEIR 模型分析","authors":"Sara Soulaimani, Abdelilah Kaddar, Fathalla A. Rihan","doi":"10.1140/epjs/s11734-024-01267-3","DOIUrl":null,"url":null,"abstract":"<p>This article analyzes a fractional-order SEIR infection epidemic model, including time delays and vaccination strategies. Four differential equations describe the infection dynamics with non-integer derivative orders, which account for memory effects and non-local interactions in disease spread. The paper first establishes the existence and uniqueness of the solution and presents equilibrium points based on the basic reproduction number, <span>\\(R_{0}\\)</span>. Using the Lyapunov direct method, the global stability of each equilibrium is proven to depend primarily on <span>\\(R_{0}\\)</span>. Theoretical findings are validated through numerical simulations, exploring the impact of vaccination and fractional derivatives on the epidemic dynamics.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a fractional endemic SEIR model with vaccination and time delay\",\"authors\":\"Sara Soulaimani, Abdelilah Kaddar, Fathalla A. Rihan\",\"doi\":\"10.1140/epjs/s11734-024-01267-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article analyzes a fractional-order SEIR infection epidemic model, including time delays and vaccination strategies. Four differential equations describe the infection dynamics with non-integer derivative orders, which account for memory effects and non-local interactions in disease spread. The paper first establishes the existence and uniqueness of the solution and presents equilibrium points based on the basic reproduction number, <span>\\\\(R_{0}\\\\)</span>. Using the Lyapunov direct method, the global stability of each equilibrium is proven to depend primarily on <span>\\\\(R_{0}\\\\)</span>. Theoretical findings are validated through numerical simulations, exploring the impact of vaccination and fractional derivatives on the epidemic dynamics.</p>\",\"PeriodicalId\":501403,\"journal\":{\"name\":\"The European Physical Journal Special Topics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Special Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1140/epjs/s11734-024-01267-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01267-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了一个分数阶 SEIR 感染流行病模型,包括时间延迟和疫苗接种策略。四个微分方程描述了非整数导数阶的感染动力学,其中考虑了疾病传播中的记忆效应和非局部相互作用。本文首先确定了解的存在性和唯一性,并根据基本繁殖数 \(R_{0}\)提出了平衡点。利用 Lyapunov 直接法,证明了每个平衡点的全局稳定性主要取决于 \(R_{0}\)。通过数值模拟,探讨了疫苗接种和分数导数对流行病动态的影响,从而验证了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of a fractional endemic SEIR model with vaccination and time delay

Analysis of a fractional endemic SEIR model with vaccination and time delay

This article analyzes a fractional-order SEIR infection epidemic model, including time delays and vaccination strategies. Four differential equations describe the infection dynamics with non-integer derivative orders, which account for memory effects and non-local interactions in disease spread. The paper first establishes the existence and uniqueness of the solution and presents equilibrium points based on the basic reproduction number, \(R_{0}\). Using the Lyapunov direct method, the global stability of each equilibrium is proven to depend primarily on \(R_{0}\). Theoretical findings are validated through numerical simulations, exploring the impact of vaccination and fractional derivatives on the epidemic dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信