人工智能系统的实时诊断技术

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hiroaki Itsuji;Takumi Uezono;Tadanobu Toba;Subrata Kumar Kundu
{"title":"人工智能系统的实时诊断技术","authors":"Hiroaki Itsuji;Takumi Uezono;Tadanobu Toba;Subrata Kumar Kundu","doi":"10.1109/OJITS.2024.3435712","DOIUrl":null,"url":null,"abstract":"The last few decades have witnessed a dramatic evolution of Artificial Intelligence (AI) algorithms, represented by Deep Neural Networks (DNNs), resulting in AI-enabled systems being significantly dominant in various fields, including robotics, healthcare, and mobility. AI-enabled systems are currently used even for safety-critical applications, including automated driving, where they encounter reliability challenges from both hardware (HW) and software (SW) perspectives. However, there is no effective technique available that can diagnose HW and SW of AI-enabled systems in real-time during operation. Therefore, this paper proposes an intelligent real-time diagnostic technique for detecting HW and SW anomalies of AI-enabled systems and continuously improving the SW quality during operation. The proposed technique can detect HW anomalies to avoid unexpected changes in AI parameters and subsequent AI performance degradation using single context data with a detection accuracy of more than 92%. The proposed technique can also detect SW anomalies and identify edge cases in real-time, which could result in performance degradation by more than 50% compared to normal conditions. The identified edge cases can be used to continuously enhance the SW quality. Experimental results show the effectiveness of the technique for practical applications and thus can contribute to realize reliable and improved AI-enabled systems.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"483-494"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614714","citationCount":"0","resultStr":"{\"title\":\"Real-Time Diagnostic Technique for AI-Enabled System\",\"authors\":\"Hiroaki Itsuji;Takumi Uezono;Tadanobu Toba;Subrata Kumar Kundu\",\"doi\":\"10.1109/OJITS.2024.3435712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last few decades have witnessed a dramatic evolution of Artificial Intelligence (AI) algorithms, represented by Deep Neural Networks (DNNs), resulting in AI-enabled systems being significantly dominant in various fields, including robotics, healthcare, and mobility. AI-enabled systems are currently used even for safety-critical applications, including automated driving, where they encounter reliability challenges from both hardware (HW) and software (SW) perspectives. However, there is no effective technique available that can diagnose HW and SW of AI-enabled systems in real-time during operation. Therefore, this paper proposes an intelligent real-time diagnostic technique for detecting HW and SW anomalies of AI-enabled systems and continuously improving the SW quality during operation. The proposed technique can detect HW anomalies to avoid unexpected changes in AI parameters and subsequent AI performance degradation using single context data with a detection accuracy of more than 92%. The proposed technique can also detect SW anomalies and identify edge cases in real-time, which could result in performance degradation by more than 50% compared to normal conditions. The identified edge cases can be used to continuously enhance the SW quality. Experimental results show the effectiveness of the technique for practical applications and thus can contribute to realize reliable and improved AI-enabled systems.\",\"PeriodicalId\":100631,\"journal\":{\"name\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"volume\":\"5 \",\"pages\":\"483-494\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614714\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10614714/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10614714/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

过去几十年来,以深度神经网络(DNN)为代表的人工智能(AI)算法发生了翻天覆地的变化,使人工智能系统在机器人、医疗保健和移动等多个领域占据了主导地位。目前,人工智能系统甚至被用于包括自动驾驶在内的安全关键型应用,在这些应用中,人工智能系统面临着硬件(HW)和软件(SW)两方面的可靠性挑战。然而,目前还没有有效的技术可以在运行过程中实时诊断人工智能系统的硬件和软件。因此,本文提出了一种智能实时诊断技术,用于检测人工智能系统的硬件和软件异常,并在运行过程中持续改进软件质量。本文提出的技术可以检测硬件异常,避免人工智能参数发生意外变化,进而导致人工智能性能下降。所提出的技术还能实时检测 SW 异常并识别边缘情况,与正常情况相比,边缘情况可能导致性能下降 50% 以上。识别出的边缘案例可用于不断提高软件质量。实验结果表明了该技术在实际应用中的有效性,从而有助于实现可靠和改进的人工智能系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Diagnostic Technique for AI-Enabled System
The last few decades have witnessed a dramatic evolution of Artificial Intelligence (AI) algorithms, represented by Deep Neural Networks (DNNs), resulting in AI-enabled systems being significantly dominant in various fields, including robotics, healthcare, and mobility. AI-enabled systems are currently used even for safety-critical applications, including automated driving, where they encounter reliability challenges from both hardware (HW) and software (SW) perspectives. However, there is no effective technique available that can diagnose HW and SW of AI-enabled systems in real-time during operation. Therefore, this paper proposes an intelligent real-time diagnostic technique for detecting HW and SW anomalies of AI-enabled systems and continuously improving the SW quality during operation. The proposed technique can detect HW anomalies to avoid unexpected changes in AI parameters and subsequent AI performance degradation using single context data with a detection accuracy of more than 92%. The proposed technique can also detect SW anomalies and identify edge cases in real-time, which could result in performance degradation by more than 50% compared to normal conditions. The identified edge cases can be used to continuously enhance the SW quality. Experimental results show the effectiveness of the technique for practical applications and thus can contribute to realize reliable and improved AI-enabled systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信