基于蛋白作为栅极电介质的突触晶体管的仿生建模和神经计算

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Liqiang Guo, Wenlong Li, Qian Dong, Chang Liu, Guanggui Cheng, Yanhua Ding, Jin Wu
{"title":"基于蛋白作为栅极电介质的突触晶体管的仿生建模和神经计算","authors":"Liqiang Guo,&nbsp;Wenlong Li,&nbsp;Qian Dong,&nbsp;Chang Liu,&nbsp;Guanggui Cheng,&nbsp;Yanhua Ding,&nbsp;Jin Wu","doi":"10.1007/s40042-024-01150-3","DOIUrl":null,"url":null,"abstract":"<div><p>Synaptic transistors are considered to hold great potential as electronic devices for constructing brain-inspired neuromorphic cognitive systems. Synaptic transistors made of degradable and environmentally friendly materials are a common concern among researchers today. Egg whites are rich in sources and contain abundant hydrophilic functional groups, including –NH and –OH groups, which can facilitate the movement of protons. In this paper, a synaptic transistor using egg white as the gate dielectric for biomimetic simulation and neuromorphic computing is prepared. The fabricated synaptic transistor successfully simulates typical biological synaptic behaviors, such as excitatory postsynaptic current and double-pulse facilitation, and effectively models the transition from short-term memory to long-term memory. Furthermore, based on the long-term memory and conductance linearity of egg-white gated synaptic transistors, it completes the neuromorphic computation for handwritten digit recognition in neural networks, indicating that egg-white gated synaptic transistors have great potential for application in “green” neural-form electronic devices.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bionic modeling and neurocomputing of synaptic transistor based on egg white as gate dielectric\",\"authors\":\"Liqiang Guo,&nbsp;Wenlong Li,&nbsp;Qian Dong,&nbsp;Chang Liu,&nbsp;Guanggui Cheng,&nbsp;Yanhua Ding,&nbsp;Jin Wu\",\"doi\":\"10.1007/s40042-024-01150-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synaptic transistors are considered to hold great potential as electronic devices for constructing brain-inspired neuromorphic cognitive systems. Synaptic transistors made of degradable and environmentally friendly materials are a common concern among researchers today. Egg whites are rich in sources and contain abundant hydrophilic functional groups, including –NH and –OH groups, which can facilitate the movement of protons. In this paper, a synaptic transistor using egg white as the gate dielectric for biomimetic simulation and neuromorphic computing is prepared. The fabricated synaptic transistor successfully simulates typical biological synaptic behaviors, such as excitatory postsynaptic current and double-pulse facilitation, and effectively models the transition from short-term memory to long-term memory. Furthermore, based on the long-term memory and conductance linearity of egg-white gated synaptic transistors, it completes the neuromorphic computation for handwritten digit recognition in neural networks, indicating that egg-white gated synaptic transistors have great potential for application in “green” neural-form electronic devices.</p></div>\",\"PeriodicalId\":677,\"journal\":{\"name\":\"Journal of the Korean Physical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Physical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40042-024-01150-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01150-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

突触晶体管被认为是极具潜力的电子设备,可用于构建大脑启发的神经形态认知系统。由可降解和环保材料制成的突触晶体管是当今研究人员普遍关注的问题。蛋清来源丰富,含有丰富的亲水官能团,包括 -NH 和 -OH 基团,可促进质子的运动。本文利用蛋白作为栅电介质,制备了一种用于仿生模拟和神经形态计算的突触晶体管。所制备的突触晶体管成功地模拟了典型的生物突触行为,如兴奋性突触后电流和双脉冲促进,并有效地模拟了从短期记忆到长期记忆的过渡。此外,基于蛋清门控突触晶体管的长期记忆和电导线性,它完成了神经网络中手写数字识别的神经形态计算,表明蛋清门控突触晶体管在 "绿色 "神经形态电子器件中具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bionic modeling and neurocomputing of synaptic transistor based on egg white as gate dielectric

Bionic modeling and neurocomputing of synaptic transistor based on egg white as gate dielectric

Synaptic transistors are considered to hold great potential as electronic devices for constructing brain-inspired neuromorphic cognitive systems. Synaptic transistors made of degradable and environmentally friendly materials are a common concern among researchers today. Egg whites are rich in sources and contain abundant hydrophilic functional groups, including –NH and –OH groups, which can facilitate the movement of protons. In this paper, a synaptic transistor using egg white as the gate dielectric for biomimetic simulation and neuromorphic computing is prepared. The fabricated synaptic transistor successfully simulates typical biological synaptic behaviors, such as excitatory postsynaptic current and double-pulse facilitation, and effectively models the transition from short-term memory to long-term memory. Furthermore, based on the long-term memory and conductance linearity of egg-white gated synaptic transistors, it completes the neuromorphic computation for handwritten digit recognition in neural networks, indicating that egg-white gated synaptic transistors have great potential for application in “green” neural-form electronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Korean Physical Society
Journal of the Korean Physical Society PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.20
自引率
16.70%
发文量
276
审稿时长
5.5 months
期刊介绍: The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信