{"title":"基于 DIC 和 AE 联合监测的不同侧压力岩石裂缝扩展特性研究","authors":"Wei Zhang, Wan-rong Liu, Xu-tao Zhang","doi":"10.1007/s40948-024-00850-1","DOIUrl":null,"url":null,"abstract":"<p>During the process of rock failure, the characteristics of crack propagation affect the fracture characteristics and macroscopic mechanical behavior of rocks, indirectly affecting the safety and stability of rock engineering. In order to study the evolution characteristics of cracks during rock failure under different lateral pressure, based on an improved digital image correlation (DIC) and acoustic emission (AE) signal recognition method, a visual biaxial servo loading device was developed to conduct biaxial compression tests on mudstone with prefabricated cracks of the same inclination angle. The research results indicate that the stages of crack propagation include microcracks propagation, crack tip formation, stable macroscopic cracks propagation, and unstable macroscopic cracks propagation. As the lateral pressure increased, the initiation frequency of cracks decreased, the quantity of propagation decreased, and the propagation path shortened, indirectly increasing the bearing strength of rocks. The initiation stress, peak stress, and elastic modulus of pre-cracked rocks with lateral pressure ≤ 2 MPa were lower than those of pre-cracked rocks with lateral pressure > 3 MPa, with the minimum reduction amplitude of 14.1%, 21.2%, and 12.6%, respectively. As the lateral pressure decreased, the dispersion of the AE main frequency distribution increased and accelerated its downward expansion. The surface temperature curves of rocks were prone to fluctuations and rapid upward evolution characteristics corresponding to crack tip formation and crack propagation, respectively. The research results provide theoretical and engineering references for the mining of weak coal seams.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"74 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on crack propagation characteristics of rocks with different lateral pressure based on joint monitoring of DIC and AE\",\"authors\":\"Wei Zhang, Wan-rong Liu, Xu-tao Zhang\",\"doi\":\"10.1007/s40948-024-00850-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During the process of rock failure, the characteristics of crack propagation affect the fracture characteristics and macroscopic mechanical behavior of rocks, indirectly affecting the safety and stability of rock engineering. In order to study the evolution characteristics of cracks during rock failure under different lateral pressure, based on an improved digital image correlation (DIC) and acoustic emission (AE) signal recognition method, a visual biaxial servo loading device was developed to conduct biaxial compression tests on mudstone with prefabricated cracks of the same inclination angle. The research results indicate that the stages of crack propagation include microcracks propagation, crack tip formation, stable macroscopic cracks propagation, and unstable macroscopic cracks propagation. As the lateral pressure increased, the initiation frequency of cracks decreased, the quantity of propagation decreased, and the propagation path shortened, indirectly increasing the bearing strength of rocks. The initiation stress, peak stress, and elastic modulus of pre-cracked rocks with lateral pressure ≤ 2 MPa were lower than those of pre-cracked rocks with lateral pressure > 3 MPa, with the minimum reduction amplitude of 14.1%, 21.2%, and 12.6%, respectively. As the lateral pressure decreased, the dispersion of the AE main frequency distribution increased and accelerated its downward expansion. The surface temperature curves of rocks were prone to fluctuations and rapid upward evolution characteristics corresponding to crack tip formation and crack propagation, respectively. The research results provide theoretical and engineering references for the mining of weak coal seams.</p>\",\"PeriodicalId\":12813,\"journal\":{\"name\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40948-024-00850-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40948-024-00850-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Study on crack propagation characteristics of rocks with different lateral pressure based on joint monitoring of DIC and AE
During the process of rock failure, the characteristics of crack propagation affect the fracture characteristics and macroscopic mechanical behavior of rocks, indirectly affecting the safety and stability of rock engineering. In order to study the evolution characteristics of cracks during rock failure under different lateral pressure, based on an improved digital image correlation (DIC) and acoustic emission (AE) signal recognition method, a visual biaxial servo loading device was developed to conduct biaxial compression tests on mudstone with prefabricated cracks of the same inclination angle. The research results indicate that the stages of crack propagation include microcracks propagation, crack tip formation, stable macroscopic cracks propagation, and unstable macroscopic cracks propagation. As the lateral pressure increased, the initiation frequency of cracks decreased, the quantity of propagation decreased, and the propagation path shortened, indirectly increasing the bearing strength of rocks. The initiation stress, peak stress, and elastic modulus of pre-cracked rocks with lateral pressure ≤ 2 MPa were lower than those of pre-cracked rocks with lateral pressure > 3 MPa, with the minimum reduction amplitude of 14.1%, 21.2%, and 12.6%, respectively. As the lateral pressure decreased, the dispersion of the AE main frequency distribution increased and accelerated its downward expansion. The surface temperature curves of rocks were prone to fluctuations and rapid upward evolution characteristics corresponding to crack tip formation and crack propagation, respectively. The research results provide theoretical and engineering references for the mining of weak coal seams.
期刊介绍:
This journal offers original research, new developments, and case studies in geomechanics and geophysics, focused on energy and resources in Earth’s subsurface. Covers theory, experimental results, numerical methods, modeling, engineering, technology and more.