利用向列脂质层建立泪液破裂动力学模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. J. Taranchuk, R. J. Braun
{"title":"利用向列脂质层建立泪液破裂动力学模型","authors":"M. J. Taranchuk, R. J. Braun","doi":"10.1007/s10665-024-10385-9","DOIUrl":null,"url":null,"abstract":"<p>One of the main roles of the lipid layer (LL) of the tear film (TF) is to help prevent evaporation of the aqueous layer (AL). The LL thickness, composition, and structure all contribute to its barrier function. It is believed that the lipid layer is primarily nonpolar with a layer of polar lipids at the LL/AL interface. There is evidence that the nonpolar region of the LL may have liquid crystalline characteristics. We investigate the structure and function of the LL via a model of the tear film with two layers, using extensional flow of a nematic liquid crystal for the LL and shear-dominated flow of a Newtonian AL. Evaporation is taken into account and is affected by the LL thickness, internal arrangement of its rod-like molecules, and external conditions. We conduct a detailed parameter study with a focus on the evaporative resistance parameter, the Marangoni number, and primary liquid crystal parameters including the Leslie viscosities and director angle. This new model responds similarly to previous Newtonian models in some respects; however, incorporating internal structure via the orientation of the liquid crystal molecules affects both evaporation and flow. As a result, we see new effects on TF dynamics and breakup.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On modeling tear breakup dynamics with a nematic lipid layer\",\"authors\":\"M. J. Taranchuk, R. J. Braun\",\"doi\":\"10.1007/s10665-024-10385-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the main roles of the lipid layer (LL) of the tear film (TF) is to help prevent evaporation of the aqueous layer (AL). The LL thickness, composition, and structure all contribute to its barrier function. It is believed that the lipid layer is primarily nonpolar with a layer of polar lipids at the LL/AL interface. There is evidence that the nonpolar region of the LL may have liquid crystalline characteristics. We investigate the structure and function of the LL via a model of the tear film with two layers, using extensional flow of a nematic liquid crystal for the LL and shear-dominated flow of a Newtonian AL. Evaporation is taken into account and is affected by the LL thickness, internal arrangement of its rod-like molecules, and external conditions. We conduct a detailed parameter study with a focus on the evaporative resistance parameter, the Marangoni number, and primary liquid crystal parameters including the Leslie viscosities and director angle. This new model responds similarly to previous Newtonian models in some respects; however, incorporating internal structure via the orientation of the liquid crystal molecules affects both evaporation and flow. As a result, we see new effects on TF dynamics and breakup.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10385-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10385-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

泪膜(TF)脂质层(LL)的主要作用之一是帮助防止水层(AL)蒸发。泪膜脂质层的厚度、组成和结构都有助于其屏障功能的发挥。一般认为,脂质层主要是非极性的,在 LL/AL 界面有一层极性脂质。有证据表明,LL 的非极性区域可能具有液晶特性。我们通过双层泪膜模型研究了 LL 的结构和功能,LL 采用向列液晶的延伸流,AL 采用牛顿 AL 的剪切流。蒸发被考虑在内,并受到 LL 厚度、其棒状分子的内部排列和外部条件的影响。我们进行了详细的参数研究,重点是蒸发阻力参数、马兰戈尼数以及包括莱斯利粘度和导向角在内的主要液晶参数。这种新模型在某些方面与之前的牛顿模型反应相似;然而,通过液晶分子的取向加入内部结构会影响蒸发和流动。因此,我们看到了对 TF 动态和破裂的新影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On modeling tear breakup dynamics with a nematic lipid layer

On modeling tear breakup dynamics with a nematic lipid layer

One of the main roles of the lipid layer (LL) of the tear film (TF) is to help prevent evaporation of the aqueous layer (AL). The LL thickness, composition, and structure all contribute to its barrier function. It is believed that the lipid layer is primarily nonpolar with a layer of polar lipids at the LL/AL interface. There is evidence that the nonpolar region of the LL may have liquid crystalline characteristics. We investigate the structure and function of the LL via a model of the tear film with two layers, using extensional flow of a nematic liquid crystal for the LL and shear-dominated flow of a Newtonian AL. Evaporation is taken into account and is affected by the LL thickness, internal arrangement of its rod-like molecules, and external conditions. We conduct a detailed parameter study with a focus on the evaporative resistance parameter, the Marangoni number, and primary liquid crystal parameters including the Leslie viscosities and director angle. This new model responds similarly to previous Newtonian models in some respects; however, incorporating internal structure via the orientation of the liquid crystal molecules affects both evaporation and flow. As a result, we see new effects on TF dynamics and breakup.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信