具有 AMDS 对偶的几类线性码及其子字段码

Xingbin Qiao, Xiaoni Du, Wenping Yuan
{"title":"具有 AMDS 对偶的几类线性码及其子字段码","authors":"Xingbin Qiao, Xiaoni Du, Wenping Yuan","doi":"10.1007/s12095-024-00729-8","DOIUrl":null,"url":null,"abstract":"<p>Subfield codes of linear codes over finite fields have recently attracted great attention due to their wide applications in secret sharing, authentication codes and association schemes. In this paper, we first present a construction of 3-dimensional linear codes <span>\\(\\varvec{C}_{\\varvec{f}}\\)</span> over finite field <span>\\({\\mathbb {F}_{\\varvec{2}}}^{\\varvec{m}}\\)</span> parameterized by any Boolean function <span>\\(\\varvec{f}\\)</span>. Then we determine explicitly the weight distributions of <span>\\(\\varvec{C}_{\\varvec{f}}\\)</span>, the punctured code <span>\\(\\widetilde{\\varvec{C}}_{\\varvec{f}}\\)</span>, as well as the corresponding subfield codes over <span>\\(\\mathbb {F}_{\\varvec{2}}\\)</span> for several classes of Boolean functions <span>\\(\\varvec{f}\\)</span>. In particular, we determine the weight distributions of subfield codes derived from <span>\\(\\varvec{r}\\)</span>-plateaued functions. Moreover, the parameters of their dual codes are investigated, which contain length-optimal and dimension-optimal AMDS codes with respect to the sphere packing bound. We emphasize that the new codes are projective and contain binary self-complementary codes. As applications, some of the projective codes we present can be employed to construct <span>\\(\\varvec{s}\\)</span>-sum sets for any odd integer <span>\\(\\varvec{s}&gt;\\varvec{1}\\)</span>.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"362 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Several classes of linear codes with AMDS duals and their subfield codes\",\"authors\":\"Xingbin Qiao, Xiaoni Du, Wenping Yuan\",\"doi\":\"10.1007/s12095-024-00729-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Subfield codes of linear codes over finite fields have recently attracted great attention due to their wide applications in secret sharing, authentication codes and association schemes. In this paper, we first present a construction of 3-dimensional linear codes <span>\\\\(\\\\varvec{C}_{\\\\varvec{f}}\\\\)</span> over finite field <span>\\\\({\\\\mathbb {F}_{\\\\varvec{2}}}^{\\\\varvec{m}}\\\\)</span> parameterized by any Boolean function <span>\\\\(\\\\varvec{f}\\\\)</span>. Then we determine explicitly the weight distributions of <span>\\\\(\\\\varvec{C}_{\\\\varvec{f}}\\\\)</span>, the punctured code <span>\\\\(\\\\widetilde{\\\\varvec{C}}_{\\\\varvec{f}}\\\\)</span>, as well as the corresponding subfield codes over <span>\\\\(\\\\mathbb {F}_{\\\\varvec{2}}\\\\)</span> for several classes of Boolean functions <span>\\\\(\\\\varvec{f}\\\\)</span>. In particular, we determine the weight distributions of subfield codes derived from <span>\\\\(\\\\varvec{r}\\\\)</span>-plateaued functions. Moreover, the parameters of their dual codes are investigated, which contain length-optimal and dimension-optimal AMDS codes with respect to the sphere packing bound. We emphasize that the new codes are projective and contain binary self-complementary codes. As applications, some of the projective codes we present can be employed to construct <span>\\\\(\\\\varvec{s}\\\\)</span>-sum sets for any odd integer <span>\\\\(\\\\varvec{s}&gt;\\\\varvec{1}\\\\)</span>.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"362 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00729-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00729-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有限域上的线性编码的子字段编码由于其在秘密共享、认证编码和关联方案中的广泛应用,最近引起了人们的极大关注。在本文中,我们首先提出了一种有限域上的三维线性编码的构造,其参数为任意布尔函数 \(\varvec{f}}\。然后,我们为几类布尔函数\(\varvec{f}\)明确地确定了\(\varvec{C}_{/varvec{f}}\)的权重分布、标点代码\(\widetilde/{varvec{C}}_{/varvec{f}}\)的权重分布,以及相应的\(\mathbb {F}_{varvec{2}}\) 上的子域代码。特别是,我们确定了由\(\varvec{r}\)-plateaued函数导出的子域编码的权重分布。此外,我们还研究了它们的对偶码的参数,这些对偶码包含长度最优和维数最优的 AMDS 码,且与球形包装约束有关。我们强调新编码是射影编码,包含二进制自补码。作为应用,我们提出的一些投影码可以用来构造任意奇整数 \(\varvec{s}>\varvec{1}\) 的 \(\varvec{s}\)-sum 集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Several classes of linear codes with AMDS duals and their subfield codes

Subfield codes of linear codes over finite fields have recently attracted great attention due to their wide applications in secret sharing, authentication codes and association schemes. In this paper, we first present a construction of 3-dimensional linear codes \(\varvec{C}_{\varvec{f}}\) over finite field \({\mathbb {F}_{\varvec{2}}}^{\varvec{m}}\) parameterized by any Boolean function \(\varvec{f}\). Then we determine explicitly the weight distributions of \(\varvec{C}_{\varvec{f}}\), the punctured code \(\widetilde{\varvec{C}}_{\varvec{f}}\), as well as the corresponding subfield codes over \(\mathbb {F}_{\varvec{2}}\) for several classes of Boolean functions \(\varvec{f}\). In particular, we determine the weight distributions of subfield codes derived from \(\varvec{r}\)-plateaued functions. Moreover, the parameters of their dual codes are investigated, which contain length-optimal and dimension-optimal AMDS codes with respect to the sphere packing bound. We emphasize that the new codes are projective and contain binary self-complementary codes. As applications, some of the projective codes we present can be employed to construct \(\varvec{s}\)-sum sets for any odd integer \(\varvec{s}>\varvec{1}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信