地理位置对木材横截面水分分布的影响:以奥地利为例的数值模拟研究

IF 2.2 3区 农林科学 Q2 FORESTRY
Florian Brandstätter, Maximilian Autengruber, Markus Lukacevic, Josef Füssl
{"title":"地理位置对木材横截面水分分布的影响:以奥地利为例的数值模拟研究","authors":"Florian Brandstätter, Maximilian Autengruber, Markus Lukacevic, Josef Füssl","doi":"10.1186/s10086-024-02147-z","DOIUrl":null,"url":null,"abstract":"Wood constantly interacts with the surrounding, locally varying climate, leading to changes in the moisture content. Advanced simulation tools can predict the two-dimensional moisture distributions caused by these changing climate conditions within wood cross sections over time. However, there is a notable absence of systematic simulation results for diverse climatic conditions and various wood cross sections. This study seeks to bridge this gap in research. Here, we present moisture fields in three solid timber and three glued laminated timber cross sections in Austria and show the effect of the location and the altitude on the moisture content distribution. The results reveal decreasing influence of the location on the moisture content development with increasing cross section size, and primarily the altitude affecting the moisture content. In addition, the results are compared with the standard for the design of timber–concrete composite structures (ONR CEN/TS 19103), revealing appropriate values in most of the cases. Only for cross sections with a width of 14 cm and larger, assigned to a specific region, the standard value is assumed underestimated. Furthermore, the distribution of moisture gradients, which are related to the crack depth development, are analyzed for Austria, demonstrating the influence of mountain areas in the moisture gradient development.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"96 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of geographical location on moisture distribution in wood cross sections: a numerical simulation study using Austria as an example\",\"authors\":\"Florian Brandstätter, Maximilian Autengruber, Markus Lukacevic, Josef Füssl\",\"doi\":\"10.1186/s10086-024-02147-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wood constantly interacts with the surrounding, locally varying climate, leading to changes in the moisture content. Advanced simulation tools can predict the two-dimensional moisture distributions caused by these changing climate conditions within wood cross sections over time. However, there is a notable absence of systematic simulation results for diverse climatic conditions and various wood cross sections. This study seeks to bridge this gap in research. Here, we present moisture fields in three solid timber and three glued laminated timber cross sections in Austria and show the effect of the location and the altitude on the moisture content distribution. The results reveal decreasing influence of the location on the moisture content development with increasing cross section size, and primarily the altitude affecting the moisture content. In addition, the results are compared with the standard for the design of timber–concrete composite structures (ONR CEN/TS 19103), revealing appropriate values in most of the cases. Only for cross sections with a width of 14 cm and larger, assigned to a specific region, the standard value is assumed underestimated. Furthermore, the distribution of moisture gradients, which are related to the crack depth development, are analyzed for Austria, demonstrating the influence of mountain areas in the moisture gradient development.\",\"PeriodicalId\":17664,\"journal\":{\"name\":\"Journal of Wood Science\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wood Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1186/s10086-024-02147-z\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s10086-024-02147-z","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

木材不断与周围局部变化的气候相互作用,导致含水率发生变化。先进的模拟工具可以预测木材横截面随时间变化的气候条件引起的二维湿度分布。然而,目前明显缺乏针对不同气候条件和各种木材横截面的系统模拟结果。本研究试图弥补这一研究空白。在这里,我们展示了奥地利三种实木和三种胶合层压材截面的湿度场,并显示了位置和海拔对含水率分布的影响。结果显示,随着横截面尺寸的增大,位置对含水率变化的影响逐渐减小,而海拔对含水率的影响最大。此外,还将结果与木材-混凝土复合结构设计标准(ONR CEN/TS 19103)进行了比较,结果表明大多数情况下的数值都是合适的。只有宽度为 14 厘米或更大的横截面(分配到一个特定区域)的标准值被低估。此外,还分析了奥地利与裂缝深度发展相关的湿度梯度分布情况,显示了山区对湿度梯度发展的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The influence of geographical location on moisture distribution in wood cross sections: a numerical simulation study using Austria as an example
Wood constantly interacts with the surrounding, locally varying climate, leading to changes in the moisture content. Advanced simulation tools can predict the two-dimensional moisture distributions caused by these changing climate conditions within wood cross sections over time. However, there is a notable absence of systematic simulation results for diverse climatic conditions and various wood cross sections. This study seeks to bridge this gap in research. Here, we present moisture fields in three solid timber and three glued laminated timber cross sections in Austria and show the effect of the location and the altitude on the moisture content distribution. The results reveal decreasing influence of the location on the moisture content development with increasing cross section size, and primarily the altitude affecting the moisture content. In addition, the results are compared with the standard for the design of timber–concrete composite structures (ONR CEN/TS 19103), revealing appropriate values in most of the cases. Only for cross sections with a width of 14 cm and larger, assigned to a specific region, the standard value is assumed underestimated. Furthermore, the distribution of moisture gradients, which are related to the crack depth development, are analyzed for Austria, demonstrating the influence of mountain areas in the moisture gradient development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Wood Science
Journal of Wood Science 工程技术-材料科学:纸与木材
CiteScore
5.40
自引率
10.30%
发文量
57
审稿时长
6 months
期刊介绍: The Journal of Wood Science is the official journal of the Japan Wood Research Society. This journal provides an international forum for the exchange of knowledge and the discussion of current issues in wood and its utilization. The journal publishes original articles on basic and applied research dealing with the science, technology, and engineering of wood, wood components, wood and wood-based products, and wood constructions. Articles concerned with pulp and paper, fiber resources from non-woody plants, wood-inhabiting insects and fungi, wood biomass, and environmental and ecological issues in forest products are also included. In addition to original articles, the journal publishes review articles on selected topics concerning wood science and related fields. The editors welcome the submission of manuscripts from any country.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信