从需求出发的在线测试合成:用博弈论加强强化学习

Ocan SankurDEVINE, UR, Thierry JéronDEVINE, UR, Nicolas MarkeyDEVINE, UR, David MentréMERCE-France, Reiya Noguchi
{"title":"从需求出发的在线测试合成:用博弈论加强强化学习","authors":"Ocan SankurDEVINE, UR, Thierry JéronDEVINE, UR, Nicolas MarkeyDEVINE, UR, David MentréMERCE-France, Reiya Noguchi","doi":"arxiv-2407.18994","DOIUrl":null,"url":null,"abstract":"We consider the automatic online synthesis of black-box test cases from\nfunctional requirements specified as automata for reactive implementations. The\ngoal of the tester is to reach some given state, so as to satisfy a coverage\ncriterion, while monitoring the violation of the requirements. We develop an\napproach based on Monte Carlo Tree Search, which is a classical technique in\nreinforcement learning for efficiently selecting promising inputs. Seeing the\nautomata requirements as a game between the implementation and the tester, we\ndevelop a heuristic by biasing the search towards inputs that are promising in\nthis game. We experimentally show that our heuristic accelerates the\nconvergence of the Monte Carlo Tree Search algorithm, thus improving the\nperformance of testing.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Test Synthesis From Requirements: Enhancing Reinforcement Learning with Game Theory\",\"authors\":\"Ocan SankurDEVINE, UR, Thierry JéronDEVINE, UR, Nicolas MarkeyDEVINE, UR, David MentréMERCE-France, Reiya Noguchi\",\"doi\":\"arxiv-2407.18994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the automatic online synthesis of black-box test cases from\\nfunctional requirements specified as automata for reactive implementations. The\\ngoal of the tester is to reach some given state, so as to satisfy a coverage\\ncriterion, while monitoring the violation of the requirements. We develop an\\napproach based on Monte Carlo Tree Search, which is a classical technique in\\nreinforcement learning for efficiently selecting promising inputs. Seeing the\\nautomata requirements as a game between the implementation and the tester, we\\ndevelop a heuristic by biasing the search towards inputs that are promising in\\nthis game. We experimentally show that our heuristic accelerates the\\nconvergence of the Monte Carlo Tree Search algorithm, thus improving the\\nperformance of testing.\",\"PeriodicalId\":501316,\"journal\":{\"name\":\"arXiv - CS - Computer Science and Game Theory\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Science and Game Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是根据功能需求自动在线合成黑盒测试用例。测试人员的目标是达到某个给定的状态,以满足覆盖标准,同时监控对需求的违反情况。我们开发了一种基于蒙特卡洛树搜索的方法,它是强化学习中的一种经典技术,用于高效选择有前途的输入。我们将自动测试要求视为实现者和测试者之间的一场博弈,通过偏向于搜索在这场博弈中有希望的输入来开发启发式方法。实验表明,我们的启发式加速了蒙特卡洛树搜索算法的收敛,从而提高了测试性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Test Synthesis From Requirements: Enhancing Reinforcement Learning with Game Theory
We consider the automatic online synthesis of black-box test cases from functional requirements specified as automata for reactive implementations. The goal of the tester is to reach some given state, so as to satisfy a coverage criterion, while monitoring the violation of the requirements. We develop an approach based on Monte Carlo Tree Search, which is a classical technique in reinforcement learning for efficiently selecting promising inputs. Seeing the automata requirements as a game between the implementation and the tester, we develop a heuristic by biasing the search towards inputs that are promising in this game. We experimentally show that our heuristic accelerates the convergence of the Monte Carlo Tree Search algorithm, thus improving the performance of testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信