$${mathbb{S}}^{2}$上自映射的周期及其同调

Pub Date : 2024-07-30 DOI:10.1007/s11253-024-02308-9
Jaume Llibre
{"title":"$${mathbb{S}}^{2}$上自映射的周期及其同调","authors":"Jaume Llibre","doi":"10.1007/s11253-024-02308-9","DOIUrl":null,"url":null,"abstract":"<p>As usual, we denote a 2-dimensional sphere by <span>\\({\\mathbb{S}}^{2}\\)</span><i>.</i> We study the periods of periodic orbits of the maps <i>f</i> : <span>\\({\\mathbb{S}}^{2}\\to {\\mathbb{S}}^{2}\\)</span> that are either continuous or <i>C</i><sup>1</sup> with all their periodic orbits being hyperbolic, or transversal, or holomorphic, or transversal holomorphic. For the first time, we summarize all known results on the periodic orbits of these distinct kinds of self-maps on <span>\\({\\mathbb{S}}^{2}\\)</span> together. We note that every time when a map <i>f</i> : <span>\\({\\mathbb{S}}^{2}\\to {\\mathbb{S}}^{2}\\)</span> increases its structure, the number of periodic orbits provided by its action on the homology increases.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periods of Self-Maps on $${\\\\mathbb{S}}^{2}$$ Via their Homology\",\"authors\":\"Jaume Llibre\",\"doi\":\"10.1007/s11253-024-02308-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As usual, we denote a 2-dimensional sphere by <span>\\\\({\\\\mathbb{S}}^{2}\\\\)</span><i>.</i> We study the periods of periodic orbits of the maps <i>f</i> : <span>\\\\({\\\\mathbb{S}}^{2}\\\\to {\\\\mathbb{S}}^{2}\\\\)</span> that are either continuous or <i>C</i><sup>1</sup> with all their periodic orbits being hyperbolic, or transversal, or holomorphic, or transversal holomorphic. For the first time, we summarize all known results on the periodic orbits of these distinct kinds of self-maps on <span>\\\\({\\\\mathbb{S}}^{2}\\\\)</span> together. We note that every time when a map <i>f</i> : <span>\\\\({\\\\mathbb{S}}^{2}\\\\to {\\\\mathbb{S}}^{2}\\\\)</span> increases its structure, the number of periodic orbits provided by its action on the homology increases.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02308-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02308-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

按照惯例,我们用 \({\mathbb{S}}^{2}\ 表示二维球体。)我们研究映射 f :\({\mathbb{S}}^{2}\to{\mathbb{S}}^{2}\)是连续的或 C1 的,其周期轨道都是双曲的、或横向的、或全态的、或横向全态的。我们首次总结了关于这些不同类型自映射在 \({\mathbb{S}}^{2}\) 上的周期轨道的所有已知结果。我们注意到,每次当一个映射 f :\({\mathbb{S}}^{2}\to{\mathbb{S}}^{2}\)的结构增加时,它对同调的作用所提供的周期轨道的数量也会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Periods of Self-Maps on $${\mathbb{S}}^{2}$$ Via their Homology

As usual, we denote a 2-dimensional sphere by \({\mathbb{S}}^{2}\). We study the periods of periodic orbits of the maps f : \({\mathbb{S}}^{2}\to {\mathbb{S}}^{2}\) that are either continuous or C1 with all their periodic orbits being hyperbolic, or transversal, or holomorphic, or transversal holomorphic. For the first time, we summarize all known results on the periodic orbits of these distinct kinds of self-maps on \({\mathbb{S}}^{2}\) together. We note that every time when a map f : \({\mathbb{S}}^{2}\to {\mathbb{S}}^{2}\) increases its structure, the number of periodic orbits provided by its action on the homology increases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信