圆图的拓扑熵、周期集和遍历性

Pub Date : 2024-07-30 DOI:10.1007/s11253-024-02305-y
Lluís Alsedà, Liane Bordignon, Jorge Groisman
{"title":"圆图的拓扑熵、周期集和遍历性","authors":"Lluís Alsedà, Liane Bordignon, Jorge Groisman","doi":"10.1007/s11253-024-02305-y","DOIUrl":null,"url":null,"abstract":"<p>Transitivity, the existence of periodic points, and positive topological entropy can be used to characterize complexity in dynamical systems. It is known that, for every graph that is not a tree and any <i>ε</i> &gt; 0, there exist (complicated) totally transitive maps (then with cofinite set of periods) such that the topological entropy is smaller than <i>ε</i> (simplicity). To numerically measure the complexity of the set of periods, we introduce a notion of the <i>boundary of cofiniteness</i>. Larger boundary of cofiniteness corresponds to a simpler set of periods. We show that, for any continuous circle maps of degree one, every totally transitive (and, hence, robustly complicated) map with small topological entropy has arbitrarily large (simplicity) boundary of cofiniteness.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Entropy, Sets of Periods, and Transitivity for Circle Maps\",\"authors\":\"Lluís Alsedà, Liane Bordignon, Jorge Groisman\",\"doi\":\"10.1007/s11253-024-02305-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transitivity, the existence of periodic points, and positive topological entropy can be used to characterize complexity in dynamical systems. It is known that, for every graph that is not a tree and any <i>ε</i> &gt; 0, there exist (complicated) totally transitive maps (then with cofinite set of periods) such that the topological entropy is smaller than <i>ε</i> (simplicity). To numerically measure the complexity of the set of periods, we introduce a notion of the <i>boundary of cofiniteness</i>. Larger boundary of cofiniteness corresponds to a simpler set of periods. We show that, for any continuous circle maps of degree one, every totally transitive (and, hence, robustly complicated) map with small topological entropy has arbitrarily large (simplicity) boundary of cofiniteness.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02305-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02305-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遍历性、周期点的存在和正拓扑熵可以用来描述动力系统的复杂性。众所周知,对于每一个非树状图和任何 ε > 0,都存在(复杂的)完全互易映射(然后具有同无限周期集),使得拓扑熵小于 ε(简单性)。为了从数值上衡量周期集的复杂性,我们引入了共适性边界的概念。较大的共适性边界对应于较简单的周期集。我们证明,对于任何阶数为 1 的连续圆映射,每一个具有小拓扑熵的完全传递映射(因此也是稳健复杂的映射)都具有任意大的(简单性)共适度边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Topological Entropy, Sets of Periods, and Transitivity for Circle Maps

Transitivity, the existence of periodic points, and positive topological entropy can be used to characterize complexity in dynamical systems. It is known that, for every graph that is not a tree and any ε > 0, there exist (complicated) totally transitive maps (then with cofinite set of periods) such that the topological entropy is smaller than ε (simplicity). To numerically measure the complexity of the set of periods, we introduce a notion of the boundary of cofiniteness. Larger boundary of cofiniteness corresponds to a simpler set of periods. We show that, for any continuous circle maps of degree one, every totally transitive (and, hence, robustly complicated) map with small topological entropy has arbitrarily large (simplicity) boundary of cofiniteness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信