{"title":"分形嵌入式分岔盒","authors":"Christian Mira","doi":"10.1007/s11253-024-02309-8","DOIUrl":null,"url":null,"abstract":"<p>This descriptive text is essentially based on Sharkovsky’s and Myrberg’s publications on the ordering of periodic solutions <i>(cycles)</i> generated by a Dim 1 unimodal smooth map <i>f</i>(<i>x</i>, <i>λ</i>)<i>.</i> Taking <i>f</i>(<i>x</i>, <i>λ</i>) = <i>x</i><sup>2</sup><i>−λ</i> as an example, it was shown in a paper published in 1975 that the bifurcations are organized in the form of a sequence of <i>well-defined fractal embedded “boxes”</i> (parameter <i>λ</i> intervals) each of which is associated with a basic cycle of period <i>k</i> and a symbol <i>j</i> permitting to distinguish cycles with the same period <i>k.</i> Without using the denominations <i>Intermittency</i> (1980) and <i>Attractors in Crisis</i> (1982), this new text shows that the notion of <i>fractal embedded “boxes”</i> describes the properties of each of these two situations as the <i>limit of a sequence of well-defined boxes</i> (<i>k</i>, <i>j</i>) as <i>k</i> → ∞.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal Embedded Boxes of Bifurcations\",\"authors\":\"Christian Mira\",\"doi\":\"10.1007/s11253-024-02309-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This descriptive text is essentially based on Sharkovsky’s and Myrberg’s publications on the ordering of periodic solutions <i>(cycles)</i> generated by a Dim 1 unimodal smooth map <i>f</i>(<i>x</i>, <i>λ</i>)<i>.</i> Taking <i>f</i>(<i>x</i>, <i>λ</i>) = <i>x</i><sup>2</sup><i>−λ</i> as an example, it was shown in a paper published in 1975 that the bifurcations are organized in the form of a sequence of <i>well-defined fractal embedded “boxes”</i> (parameter <i>λ</i> intervals) each of which is associated with a basic cycle of period <i>k</i> and a symbol <i>j</i> permitting to distinguish cycles with the same period <i>k.</i> Without using the denominations <i>Intermittency</i> (1980) and <i>Attractors in Crisis</i> (1982), this new text shows that the notion of <i>fractal embedded “boxes”</i> describes the properties of each of these two situations as the <i>limit of a sequence of well-defined boxes</i> (<i>k</i>, <i>j</i>) as <i>k</i> → ∞.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02309-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02309-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
这篇描述性文章主要基于沙可夫斯基和米尔贝格发表的关于由二维单模态光滑映射 f(x, λ) 产生的周期解(循环)排序的论文。以 f(x, λ) = x2-λ 为例,1975 年发表的一篇论文表明,分岔是以一系列定义明确的分形嵌入 "盒子"(参数 λ 间距)的形式组织起来的,每个盒子都与周期为 k 的基本周期相关联,并用符号 j 区分周期 k 相同的周期。这篇新文章没有使用 "间歇性"(1980 年)和 "危机中的吸引力"(1982 年)这两个名称,而是表明分形内嵌 "盒子 "的概念描述了这两种情况中每一种情况的特性,即随着 k → ∞,一连串定义明确的盒子(k,j)的极限。
This descriptive text is essentially based on Sharkovsky’s and Myrberg’s publications on the ordering of periodic solutions (cycles) generated by a Dim 1 unimodal smooth map f(x, λ). Taking f(x, λ) = x2−λ as an example, it was shown in a paper published in 1975 that the bifurcations are organized in the form of a sequence of well-defined fractal embedded “boxes” (parameter λ intervals) each of which is associated with a basic cycle of period k and a symbol j permitting to distinguish cycles with the same period k. Without using the denominations Intermittency (1980) and Attractors in Crisis (1982), this new text shows that the notion of fractal embedded “boxes” describes the properties of each of these two situations as the limit of a sequence of well-defined boxes (k, j) as k → ∞.