不可识别模式的惩罚性估计

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Junichiro Yoshida, Nakahiro Yoshida
{"title":"不可识别模式的惩罚性估计","authors":"Junichiro Yoshida,&nbsp;Nakahiro Yoshida","doi":"10.1007/s10463-024-00905-w","DOIUrl":null,"url":null,"abstract":"<div><p>We derive asymptotic properties of penalized estimators for singular models for which identifiability may break and the true parameter values can lie on the boundary of the parameter space. Selection consistency of the estimators is also validated. The problem that the true values lie on the boundary is solved by our previous results applicable to singular models, besides, penalized estimation and non-ergodic statistics. To overcome non-identifiability, we consider a suitable penalty such as the non-convex Bridge and the adaptive Lasso that stabilize the asymptotic behavior of the estimator and shrink inactive parameters. Then the estimator converges to one of the most parsimonious values among all the true values. The oracle property can also be obtained even if likelihood ratio tests for model selection are labor intensive due to singularity of models. Examples are: a superposition of parametric proportional hazard models and a counting process having intensity with multicollinear covariates.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penalized estimation for non-identifiable models\",\"authors\":\"Junichiro Yoshida,&nbsp;Nakahiro Yoshida\",\"doi\":\"10.1007/s10463-024-00905-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We derive asymptotic properties of penalized estimators for singular models for which identifiability may break and the true parameter values can lie on the boundary of the parameter space. Selection consistency of the estimators is also validated. The problem that the true values lie on the boundary is solved by our previous results applicable to singular models, besides, penalized estimation and non-ergodic statistics. To overcome non-identifiability, we consider a suitable penalty such as the non-convex Bridge and the adaptive Lasso that stabilize the asymptotic behavior of the estimator and shrink inactive parameters. Then the estimator converges to one of the most parsimonious values among all the true values. The oracle property can also be obtained even if likelihood ratio tests for model selection are labor intensive due to singularity of models. Examples are: a superposition of parametric proportional hazard models and a counting process having intensity with multicollinear covariates.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-024-00905-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-024-00905-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们推导了奇异模型的惩罚估计子的渐近特性,这些奇异模型的可识别性可能被破坏,真实参数值可能位于参数空间的边界上。我们还验证了估计器的选择一致性。除了惩罚估计和非啮合统计之外,我们以前适用于奇异模型的结果也解决了真值位于边界上的问题。为了克服不可识别性,我们考虑了合适的惩罚,如非凸桥和自适应拉索,它们能稳定估计器的渐近行为并缩小非活动参数。然后,估计器会收敛到所有真实值中最合理的一个值。即使由于模型的奇异性而导致模型选择的似然比检验耗费大量人力,也能获得神谕特性。例如:参数比例危险模型的叠加和具有多共线协变量强度的计数过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penalized estimation for non-identifiable models

We derive asymptotic properties of penalized estimators for singular models for which identifiability may break and the true parameter values can lie on the boundary of the parameter space. Selection consistency of the estimators is also validated. The problem that the true values lie on the boundary is solved by our previous results applicable to singular models, besides, penalized estimation and non-ergodic statistics. To overcome non-identifiability, we consider a suitable penalty such as the non-convex Bridge and the adaptive Lasso that stabilize the asymptotic behavior of the estimator and shrink inactive parameters. Then the estimator converges to one of the most parsimonious values among all the true values. The oracle property can also be obtained even if likelihood ratio tests for model selection are labor intensive due to singularity of models. Examples are: a superposition of parametric proportional hazard models and a counting process having intensity with multicollinear covariates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信