代数有界扩展的分类属性和同调猜想

Yongyun Qin, Xiaoxiao Xu, Jinbi Zhang, Guodong Zhou
{"title":"代数有界扩展的分类属性和同调猜想","authors":"Yongyun Qin, Xiaoxiao Xu, Jinbi Zhang, Guodong Zhou","doi":"arxiv-2407.21480","DOIUrl":null,"url":null,"abstract":"An extension $B\\subset A$ of finite dimensional algebras is bounded if the\n$B$-$B$-bimodule $A/B$ is $B$-tensor nilpotent, its projective dimension is\nfinite and $\\mathrm{Tor}_i^B(A/B, (A/B)^{\\otimes_B j})=0$ for all $i, j\\geq 1$.\nWe show that for a bounded extension $B\\subset A$, the algebras $A$ and $B$ are\nsingularly equivalent of Morita type with level. Additively, under some\nconditions, their stable categories of Gorenstein projective modules and\nGorenstein defect categories are equivalent, respectively. Some homological\nconjectures are also investigated for bounded extensions, including\nAuslander-Reiten conjecture, finististic dimension conjecture, Fg condition,\nHan's conjecture, and Keller's conjecture. Applications to trivial extensions\nand triangular matrix algebras are given. In course of proofs, we give some handy criteria for a functor between module\ncategories induces triangle functors between stable categories of Gorenstein\nprojective modules and Gorenstein defect categories, which generalise some\nknown criteria and hence, might be of independent interest.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Categorical properties and homological conjectures for bounded extensions of algebras\",\"authors\":\"Yongyun Qin, Xiaoxiao Xu, Jinbi Zhang, Guodong Zhou\",\"doi\":\"arxiv-2407.21480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An extension $B\\\\subset A$ of finite dimensional algebras is bounded if the\\n$B$-$B$-bimodule $A/B$ is $B$-tensor nilpotent, its projective dimension is\\nfinite and $\\\\mathrm{Tor}_i^B(A/B, (A/B)^{\\\\otimes_B j})=0$ for all $i, j\\\\geq 1$.\\nWe show that for a bounded extension $B\\\\subset A$, the algebras $A$ and $B$ are\\nsingularly equivalent of Morita type with level. Additively, under some\\nconditions, their stable categories of Gorenstein projective modules and\\nGorenstein defect categories are equivalent, respectively. Some homological\\nconjectures are also investigated for bounded extensions, including\\nAuslander-Reiten conjecture, finististic dimension conjecture, Fg condition,\\nHan's conjecture, and Keller's conjecture. Applications to trivial extensions\\nand triangular matrix algebras are given. In course of proofs, we give some handy criteria for a functor between module\\ncategories induces triangle functors between stable categories of Gorenstein\\nprojective modules and Gorenstein defect categories, which generalise some\\nknown criteria and hence, might be of independent interest.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果$B$-$B$双模块$A/B$是$B$张量零potent的,它的投影维数是无限的,并且对于所有的$i, jgeq 1$,$\mathrm{Tor}_i^B(A/B, (A/B)^{\otimes_B j})=0$,那么有限维代数的扩展$B/子集A$就是有界的。我们证明,对于有界扩展 $B(子集 A$),数组 $A$ 和数组 $B$ 是等价的莫里塔类型有级数组。此外,在某些条件下,它们的戈伦斯坦投影模块稳定范畴和戈伦斯坦缺陷范畴也分别等价。此外,还研究了有界扩展的一些同调猜想,包括奥斯兰德-雷顿猜想、有限维猜想、Fg 条件、韩氏猜想和凯勒猜想。我们给出了琐细扩展和三角矩阵代数的应用。在证明过程中,我们给出了模块范畴之间的函子诱导戈伦斯坦投影模块稳定范畴与戈伦斯坦缺陷范畴之间的三角函子的一些方便的标准,这些标准概括了一些已知的标准,因此可能具有独立的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Categorical properties and homological conjectures for bounded extensions of algebras
An extension $B\subset A$ of finite dimensional algebras is bounded if the $B$-$B$-bimodule $A/B$ is $B$-tensor nilpotent, its projective dimension is finite and $\mathrm{Tor}_i^B(A/B, (A/B)^{\otimes_B j})=0$ for all $i, j\geq 1$. We show that for a bounded extension $B\subset A$, the algebras $A$ and $B$ are singularly equivalent of Morita type with level. Additively, under some conditions, their stable categories of Gorenstein projective modules and Gorenstein defect categories are equivalent, respectively. Some homological conjectures are also investigated for bounded extensions, including Auslander-Reiten conjecture, finististic dimension conjecture, Fg condition, Han's conjecture, and Keller's conjecture. Applications to trivial extensions and triangular matrix algebras are given. In course of proofs, we give some handy criteria for a functor between module categories induces triangle functors between stable categories of Gorenstein projective modules and Gorenstein defect categories, which generalise some known criteria and hence, might be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信