关于加权高斯度量的索波列夫规范的等价性

IF 1 3区 数学 Q1 MATHEMATICS
D. Addona
{"title":"关于加权高斯度量的索波列夫规范的等价性","authors":"D. Addona","doi":"10.1007/s11118-024-10155-3","DOIUrl":null,"url":null,"abstract":"<p>We consider the spaces <span>\\({\\text {L}}^p(X,\\nu ;V)\\)</span>, where <i>X</i> is a separable Banach space, <span>\\(\\mu \\)</span> is a centred non-degenerate Gaussian measure, <span>\\(\\nu :=Ke^{-U}\\mu \\)</span> with normalizing factor <i>K</i> and <i>V</i> is a separable Hilbert space. In this paper we prove a vector-valued Poincaré inequality for functions <span>\\(F\\in W^{1,p}(X,\\nu ;V)\\)</span>, which allows us to show that for every <span>\\(p\\in (1,\\infty )\\)</span> and every <span>\\(k\\in \\mathbb {N}\\)</span> the norm in <span>\\(W^{k,p}(X,\\nu )\\)</span> is equivalent to the graph norm of <span>\\(D_H^{k}\\)</span> (the <i>k</i>-th Malliavin derivative) in <span>\\({\\text {L}}^p(X,\\nu )\\)</span>. To conclude, we show exponential decay estimates for the <i>V</i>-valued perturbed Ornstein-Uhlenbeck semigroup <span>\\((T^V(t))_{t\\ge 0}\\)</span>, defined in Section 2.6, as <i>t</i> goes to infinity. Useful tools are the study of the asymptotic behaviour of the scalar perturbed Ornstein-Uhlenbeck <span>\\((T(t))_{t\\ge 0}\\)</span>, and pointwise estimates for <span>\\(|D_HT(t)f|_H^p\\)</span> by means of both <span>\\(T(t)|D_Hf|^p_H\\)</span> and <span>\\(T(t)|f|^p\\)</span>.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"44 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalence of Sobolev Norms with Respect to Weighted Gaussian Measures\",\"authors\":\"D. Addona\",\"doi\":\"10.1007/s11118-024-10155-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the spaces <span>\\\\({\\\\text {L}}^p(X,\\\\nu ;V)\\\\)</span>, where <i>X</i> is a separable Banach space, <span>\\\\(\\\\mu \\\\)</span> is a centred non-degenerate Gaussian measure, <span>\\\\(\\\\nu :=Ke^{-U}\\\\mu \\\\)</span> with normalizing factor <i>K</i> and <i>V</i> is a separable Hilbert space. In this paper we prove a vector-valued Poincaré inequality for functions <span>\\\\(F\\\\in W^{1,p}(X,\\\\nu ;V)\\\\)</span>, which allows us to show that for every <span>\\\\(p\\\\in (1,\\\\infty )\\\\)</span> and every <span>\\\\(k\\\\in \\\\mathbb {N}\\\\)</span> the norm in <span>\\\\(W^{k,p}(X,\\\\nu )\\\\)</span> is equivalent to the graph norm of <span>\\\\(D_H^{k}\\\\)</span> (the <i>k</i>-th Malliavin derivative) in <span>\\\\({\\\\text {L}}^p(X,\\\\nu )\\\\)</span>. To conclude, we show exponential decay estimates for the <i>V</i>-valued perturbed Ornstein-Uhlenbeck semigroup <span>\\\\((T^V(t))_{t\\\\ge 0}\\\\)</span>, defined in Section 2.6, as <i>t</i> goes to infinity. Useful tools are the study of the asymptotic behaviour of the scalar perturbed Ornstein-Uhlenbeck <span>\\\\((T(t))_{t\\\\ge 0}\\\\)</span>, and pointwise estimates for <span>\\\\(|D_HT(t)f|_H^p\\\\)</span> by means of both <span>\\\\(T(t)|D_Hf|^p_H\\\\)</span> and <span>\\\\(T(t)|f|^p\\\\)</span>.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10155-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10155-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑空间 \({\text {L}}^p(X,\nu ;V)\),其中 X 是一个可分离的巴拿赫空间,\(\mu \)是一个有中心的非退化高斯度量,\(\nu :=Ke^{-U}\mu \)带有归一化因子 K,而 V 是一个可分离的希尔伯特空间。本文证明了函数 \(F\in W^{1,p}(X,\nu ;V)),这使我们能够证明,对于每一个(p)和每一个(k),在(W^{k、p}(X,\nu))中的\(D_H^{k}\)(第 k 个马利亚文导数)的图规范是等价的。最后,我们展示了第 2.6 节中定义的 V 值扰动奥恩斯坦-乌伦贝克半群 \((T^V(t))_{t\ge 0}\)在 t 进入无穷大时的指数衰减估计。有用的工具是研究标量扰动 Ornstein-Uhlenbeck \((T(t))_{t\ge 0}\) 的渐近行为,以及通过 \(T(t)|D_HT(t)f|_H^p\) 和 \(T(t)|f|^p\) 对 \(|D_HT(t)f|_H^p\) 的点估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivalence of Sobolev Norms with Respect to Weighted Gaussian Measures

We consider the spaces \({\text {L}}^p(X,\nu ;V)\), where X is a separable Banach space, \(\mu \) is a centred non-degenerate Gaussian measure, \(\nu :=Ke^{-U}\mu \) with normalizing factor K and V is a separable Hilbert space. In this paper we prove a vector-valued Poincaré inequality for functions \(F\in W^{1,p}(X,\nu ;V)\), which allows us to show that for every \(p\in (1,\infty )\) and every \(k\in \mathbb {N}\) the norm in \(W^{k,p}(X,\nu )\) is equivalent to the graph norm of \(D_H^{k}\) (the k-th Malliavin derivative) in \({\text {L}}^p(X,\nu )\). To conclude, we show exponential decay estimates for the V-valued perturbed Ornstein-Uhlenbeck semigroup \((T^V(t))_{t\ge 0}\), defined in Section 2.6, as t goes to infinity. Useful tools are the study of the asymptotic behaviour of the scalar perturbed Ornstein-Uhlenbeck \((T(t))_{t\ge 0}\), and pointwise estimates for \(|D_HT(t)f|_H^p\) by means of both \(T(t)|D_Hf|^p_H\) and \(T(t)|f|^p\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信