关于双分量高阶卡马萨-霍姆系统的考奇问题

Pub Date : 2024-07-29 DOI:10.1002/mana.202300382
Shouming Zhou, Luhang Zhou, Rong Chen
{"title":"关于双分量高阶卡马萨-霍姆系统的考奇问题","authors":"Shouming Zhou,&nbsp;Luhang Zhou,&nbsp;Rong Chen","doi":"10.1002/mana.202300382","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on the well-posedness, blow-up phenomena, and continuity of the data-to-solution map of the Cauchy problem for a two-component higher order Camassa–Holm (CH) system. The local well-posedness is established in Besov spaces <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n <mfrac>\n <mn>1</mn>\n <mi>p</mi>\n </mfrac>\n </msubsup>\n <mo>×</mo>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n <mfrac>\n <mn>1</mn>\n <mi>p</mi>\n </mfrac>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$B_{p,1}^{\\frac{1}{p}} \\times B_{p,1}^{2+\\frac{1}{p}}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\le p &amp;lt; \\infty$</annotation>\n </semantics></math>, which improves the local well-posedness result proved before in Tang and Liu [Z. Angew. Math. Phys. 66 (2015), 1559–1580], Ye and Yin [arXiv preprint arXiv:2109.00948 (2021)], Zhang and Li [Nonlinear Anal. Real World Appl. 35 (2017), 414–440], and Zhou [Math. Nachr. 291 (2018), no. 10, 1595–1619]. Next, we consider the continuity of the solution-to-data map, that is, the ill-posedness is derived in Besov space <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>∞</mi>\n </mrow>\n <mrow>\n <mi>s</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msubsup>\n <mo>×</mo>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>∞</mi>\n </mrow>\n <mi>s</mi>\n </msubsup>\n </mrow>\n <annotation>$B_{p,\\infty }^{s - 2} \\times B_{p,\\infty }^s$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>≤</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\le p \\le \\infty$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>&gt;</mo>\n <mi>max</mi>\n <mo>{</mo>\n <mn>2</mn>\n <mo>+</mo>\n <mfrac>\n <mn>1</mn>\n <mi>p</mi>\n </mfrac>\n <mo>,</mo>\n <mfrac>\n <mn>5</mn>\n <mn>2</mn>\n </mfrac>\n <mo>}</mo>\n </mrow>\n <annotation>$s&amp;gt;\\max \\lbrace 2+\\frac{1}{p},\\frac{5}{2}\\rbrace$</annotation>\n </semantics></math>. Then, the nonuniform continuous and Hölder continuous dependence on initial data for this system are also presented in Besov spaces <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n <mrow>\n <mi>s</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msubsup>\n <mo>×</mo>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n <mi>s</mi>\n </msubsup>\n </mrow>\n <annotation>$B_{p,r}^{s - 2} \\times B_{p,r}^s$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\le p,r &amp;lt; \\infty$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>&gt;</mo>\n <mi>max</mi>\n <mo>{</mo>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n <mfrac>\n <mn>1</mn>\n <mi>p</mi>\n </mfrac>\n <mo>,</mo>\n <mfrac>\n <mn>5</mn>\n <mn>2</mn>\n </mfrac>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$s &amp;gt; \\max \\lbrace {2+\\frac{1}{p},\\frac{5}{2}}\\rbrace$</annotation>\n </semantics></math>. Finally, the precise blow-up criteria for the strong solutions of the two-component higher order CH system is determined in the lowest Sobolev space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mrow>\n <mi>s</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>H</mi>\n <mi>s</mi>\n </msup>\n </mrow>\n <annotation>$H^{s-2}\\times H^s$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>&gt;</mo>\n <mfrac>\n <mn>5</mn>\n <mn>2</mn>\n </mfrac>\n </mrow>\n <annotation>$s&amp;gt;\\frac{5}{2}$</annotation>\n </semantics></math>, which improves the blow-up criteria result established before in He and Yin [Discrete Contin. Dyn. Syst. 37 (2016), no. 3, 1509–1537] and Zhou [Math. Nachr. 291 (2018), no. 10, 1595–1619].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Cauchy problem for a two-component higher order Camassa–Holm system\",\"authors\":\"Shouming Zhou,&nbsp;Luhang Zhou,&nbsp;Rong Chen\",\"doi\":\"10.1002/mana.202300382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we focus on the well-posedness, blow-up phenomena, and continuity of the data-to-solution map of the Cauchy problem for a two-component higher order Camassa–Holm (CH) system. The local well-posedness is established in Besov spaces <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>B</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n <mfrac>\\n <mn>1</mn>\\n <mi>p</mi>\\n </mfrac>\\n </msubsup>\\n <mo>×</mo>\\n <msubsup>\\n <mi>B</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n <mo>+</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mi>p</mi>\\n </mfrac>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$B_{p,1}^{\\\\frac{1}{p}} \\\\times B_{p,1}^{2+\\\\frac{1}{p}}$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>≤</mo>\\n <mi>p</mi>\\n <mo>&lt;</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1 \\\\le p &amp;lt; \\\\infty$</annotation>\\n </semantics></math>, which improves the local well-posedness result proved before in Tang and Liu [Z. Angew. Math. Phys. 66 (2015), 1559–1580], Ye and Yin [arXiv preprint arXiv:2109.00948 (2021)], Zhang and Li [Nonlinear Anal. Real World Appl. 35 (2017), 414–440], and Zhou [Math. Nachr. 291 (2018), no. 10, 1595–1619]. Next, we consider the continuity of the solution-to-data map, that is, the ill-posedness is derived in Besov space <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>B</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>∞</mi>\\n </mrow>\\n <mrow>\\n <mi>s</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msubsup>\\n <mo>×</mo>\\n <msubsup>\\n <mi>B</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>∞</mi>\\n </mrow>\\n <mi>s</mi>\\n </msubsup>\\n </mrow>\\n <annotation>$B_{p,\\\\infty }^{s - 2} \\\\times B_{p,\\\\infty }^s$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>≤</mo>\\n <mi>p</mi>\\n <mo>≤</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1 \\\\le p \\\\le \\\\infty$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mo>&gt;</mo>\\n <mi>max</mi>\\n <mo>{</mo>\\n <mn>2</mn>\\n <mo>+</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mi>p</mi>\\n </mfrac>\\n <mo>,</mo>\\n <mfrac>\\n <mn>5</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$s&amp;gt;\\\\max \\\\lbrace 2+\\\\frac{1}{p},\\\\frac{5}{2}\\\\rbrace$</annotation>\\n </semantics></math>. Then, the nonuniform continuous and Hölder continuous dependence on initial data for this system are also presented in Besov spaces <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>B</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>r</mi>\\n </mrow>\\n <mrow>\\n <mi>s</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msubsup>\\n <mo>×</mo>\\n <msubsup>\\n <mi>B</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>r</mi>\\n </mrow>\\n <mi>s</mi>\\n </msubsup>\\n </mrow>\\n <annotation>$B_{p,r}^{s - 2} \\\\times B_{p,r}^s$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>≤</mo>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>r</mi>\\n <mo>&lt;</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1 \\\\le p,r &amp;lt; \\\\infty$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mo>&gt;</mo>\\n <mi>max</mi>\\n <mo>{</mo>\\n <mrow>\\n <mn>2</mn>\\n <mo>+</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mi>p</mi>\\n </mfrac>\\n <mo>,</mo>\\n <mfrac>\\n <mn>5</mn>\\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$s &amp;gt; \\\\max \\\\lbrace {2+\\\\frac{1}{p},\\\\frac{5}{2}}\\\\rbrace$</annotation>\\n </semantics></math>. Finally, the precise blow-up criteria for the strong solutions of the two-component higher order CH system is determined in the lowest Sobolev space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mi>s</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>H</mi>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n <annotation>$H^{s-2}\\\\times H^s$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mo>&gt;</mo>\\n <mfrac>\\n <mn>5</mn>\\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n <annotation>$s&amp;gt;\\\\frac{5}{2}$</annotation>\\n </semantics></math>, which improves the blow-up criteria result established before in He and Yin [Discrete Contin. Dyn. Syst. 37 (2016), no. 3, 1509–1537] and Zhou [Math. Nachr. 291 (2018), no. 10, 1595–1619].</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究双分量高阶卡马萨-霍姆(Camassa-Holm,CH)系统的考奇问题的解析性、炸毁现象以及数据到解图的连续性。在贝索夫空间中建立了局部解析性,其中有 ,这改进了之前在Tang和Liu [Z. Angew. Math. Phys. 66 (2015), 1559-1580], Ye和Yin [arXiv preprint arXiv:2109.00948 (2021)],Zhang和Li [Nonlinear Anal. Real World Appl. 35 (2017), 414-440],以及Zhou [Math. Nachr. 291 (2018), no. 10, 1595-1619]中证明的局部解析性结果。接下来,我们考虑解到数据映射的连续性,即在贝索夫空间中以 和 求出不合问题。然后,在有 和 的贝索夫空间中提出了该系统的非均匀连续性和赫尔德连续性对初始数据的依赖性。最后,在有 和 的最低 Sobolev 空间中确定了两分量高阶 CH 系统强解的精确炸毁判据,改进了之前在 He 和 Yin [Discrete Contin. Dyn. Syst.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Cauchy problem for a two-component higher order Camassa–Holm system

In this paper, we focus on the well-posedness, blow-up phenomena, and continuity of the data-to-solution map of the Cauchy problem for a two-component higher order Camassa–Holm (CH) system. The local well-posedness is established in Besov spaces B p , 1 1 p × B p , 1 2 + 1 p $B_{p,1}^{\frac{1}{p}} \times B_{p,1}^{2+\frac{1}{p}}$ with 1 p < $1 \le p &lt; \infty$ , which improves the local well-posedness result proved before in Tang and Liu [Z. Angew. Math. Phys. 66 (2015), 1559–1580], Ye and Yin [arXiv preprint arXiv:2109.00948 (2021)], Zhang and Li [Nonlinear Anal. Real World Appl. 35 (2017), 414–440], and Zhou [Math. Nachr. 291 (2018), no. 10, 1595–1619]. Next, we consider the continuity of the solution-to-data map, that is, the ill-posedness is derived in Besov space B p , s 2 × B p , s $B_{p,\infty }^{s - 2} \times B_{p,\infty }^s$ with 1 p $1 \le p \le \infty$ and s > max { 2 + 1 p , 5 2 } $s&gt;\max \lbrace 2+\frac{1}{p},\frac{5}{2}\rbrace$ . Then, the nonuniform continuous and Hölder continuous dependence on initial data for this system are also presented in Besov spaces B p , r s 2 × B p , r s $B_{p,r}^{s - 2} \times B_{p,r}^s$ with 1 p , r < $1 \le p,r &lt; \infty$ and s > max { 2 + 1 p , 5 2 } $s &gt; \max \lbrace {2+\frac{1}{p},\frac{5}{2}}\rbrace$ . Finally, the precise blow-up criteria for the strong solutions of the two-component higher order CH system is determined in the lowest Sobolev space H s 2 × H s $H^{s-2}\times H^s$ with s > 5 2 $s&gt;\frac{5}{2}$ , which improves the blow-up criteria result established before in He and Yin [Discrete Contin. Dyn. Syst. 37 (2016), no. 3, 1509–1537] and Zhou [Math. Nachr. 291 (2018), no. 10, 1595–1619].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信