三维随机场伊辛模型在整个低温体系中的长程有序性

IF 2.6 1区 数学 Q1 MATHEMATICS
Jian Ding, Yu Liu, Aoteng Xia
{"title":"三维随机场伊辛模型在整个低温体系中的长程有序性","authors":"Jian Ding, Yu Liu, Aoteng Xia","doi":"10.1007/s00222-024-01283-z","DOIUrl":null,"url":null,"abstract":"<p>For <span>\\(d\\geq 3\\)</span>, we study the Ising model on <span>\\(\\mathbb{Z}^{d}\\)</span> with random field given by <span>\\(\\{\\epsilon h_{v}: v\\in \\mathbb{Z}^{d}\\}\\)</span> where <span>\\(h_{v}\\)</span>’s are independent normal variables with mean 0 and variance 1. We show that for any <span>\\(T &lt; T_{c}\\)</span> (here <span>\\(T_{c}\\)</span> is the critical temperature without disorder), long range order exists as long as <span>\\(\\epsilon \\)</span> is sufficiently small depending on <span>\\(T\\)</span>. Our work extends previous results of Imbrie (1985) and Bricmont–Kupiainen (1988) from the very low temperature regime to the entire low temperature regime.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"43 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long range order for three-dimensional random field Ising model throughout the entire low temperature regime\",\"authors\":\"Jian Ding, Yu Liu, Aoteng Xia\",\"doi\":\"10.1007/s00222-024-01283-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <span>\\\\(d\\\\geq 3\\\\)</span>, we study the Ising model on <span>\\\\(\\\\mathbb{Z}^{d}\\\\)</span> with random field given by <span>\\\\(\\\\{\\\\epsilon h_{v}: v\\\\in \\\\mathbb{Z}^{d}\\\\}\\\\)</span> where <span>\\\\(h_{v}\\\\)</span>’s are independent normal variables with mean 0 and variance 1. We show that for any <span>\\\\(T &lt; T_{c}\\\\)</span> (here <span>\\\\(T_{c}\\\\)</span> is the critical temperature without disorder), long range order exists as long as <span>\\\\(\\\\epsilon \\\\)</span> is sufficiently small depending on <span>\\\\(T\\\\)</span>. Our work extends previous results of Imbrie (1985) and Bricmont–Kupiainen (1988) from the very low temperature regime to the entire low temperature regime.</p>\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01283-z\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01283-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于(d\geq 3\), 我们研究的是\(\mathbb{Z}^{d}\)上的伊辛模型,其随机场由\(\{epsilon h_{v}: v\in \mathbb{Z}^{d}\)给出,其中\(h_{v}\)是均值为0、方差为1的独立正态变量。我们证明,对于任意 \(T < T_{c}\) (这里 \(T_{c}\) 是无序的临界温度),只要 \(\epsilon \) 足够小,就会存在长程有序性。我们的研究将 Imbrie(1985)和 Bricmont-Kupiainen(1988)之前的研究成果从超低温体系扩展到了整个低温体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Long range order for three-dimensional random field Ising model throughout the entire low temperature regime

Long range order for three-dimensional random field Ising model throughout the entire low temperature regime

For \(d\geq 3\), we study the Ising model on \(\mathbb{Z}^{d}\) with random field given by \(\{\epsilon h_{v}: v\in \mathbb{Z}^{d}\}\) where \(h_{v}\)’s are independent normal variables with mean 0 and variance 1. We show that for any \(T < T_{c}\) (here \(T_{c}\) is the critical temperature without disorder), long range order exists as long as \(\epsilon \) is sufficiently small depending on \(T\). Our work extends previous results of Imbrie (1985) and Bricmont–Kupiainen (1988) from the very low temperature regime to the entire low temperature regime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信