四面体网格的优化双体积

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Alec Jacobson
{"title":"四面体网格的优化双体积","authors":"Alec Jacobson","doi":"10.1111/cgf.15133","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Constructing well-behaved Laplacian and mass matrices is essential for tetrahedral mesh processing. Unfortunately, the <i>de facto</i> standard linear finite elements exhibit bias on tetrahedralized regular grids, motivating the development of finite-volume methods. In this paper, we place existing methods into a common construction, showing how their differences amount to the choice of simplex centers. These choices lead to satisfaction or breakdown of important properties: continuity with respect to vertex positions, positive semi-definiteness of the implied Dirichlet energy, positivity of the mass matrix, and unbiased-ness on regular grids. Based on this analysis, we propose a new method for constructing dual-volumes which explicitly satisfy all of these properties via convex optimization.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15133","citationCount":"0","resultStr":"{\"title\":\"Optimized Dual-Volumes for Tetrahedral Meshes\",\"authors\":\"Alec Jacobson\",\"doi\":\"10.1111/cgf.15133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Constructing well-behaved Laplacian and mass matrices is essential for tetrahedral mesh processing. Unfortunately, the <i>de facto</i> standard linear finite elements exhibit bias on tetrahedralized regular grids, motivating the development of finite-volume methods. In this paper, we place existing methods into a common construction, showing how their differences amount to the choice of simplex centers. These choices lead to satisfaction or breakdown of important properties: continuity with respect to vertex positions, positive semi-definiteness of the implied Dirichlet energy, positivity of the mass matrix, and unbiased-ness on regular grids. Based on this analysis, we propose a new method for constructing dual-volumes which explicitly satisfy all of these properties via convex optimization.</p>\\n </div>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15133\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15133\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15133","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

构建良好的拉普拉斯矩阵和质量矩阵对四面体网格处理至关重要。遗憾的是,事实上的标准线性有限元在四面体正则网格上表现出偏差,这促使了有限体积方法的发展。在本文中,我们将现有的方法归入一个共同的结构中,展示了它们之间的差异是如何体现在单纯形中心的选择上的。这些选择会导致重要性质的满足或破坏:顶点位置的连续性、隐含 Dirichlet 能量的正半定义性、质量矩阵的正性以及规则网格上的无偏性。基于上述分析,我们提出了一种新方法,通过凸优化构建明确满足所有这些属性的对偶体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimized Dual-Volumes for Tetrahedral Meshes

Optimized Dual-Volumes for Tetrahedral Meshes

Constructing well-behaved Laplacian and mass matrices is essential for tetrahedral mesh processing. Unfortunately, the de facto standard linear finite elements exhibit bias on tetrahedralized regular grids, motivating the development of finite-volume methods. In this paper, we place existing methods into a common construction, showing how their differences amount to the choice of simplex centers. These choices lead to satisfaction or breakdown of important properties: continuity with respect to vertex positions, positive semi-definiteness of the implied Dirichlet energy, positivity of the mass matrix, and unbiased-ness on regular grids. Based on this analysis, we propose a new method for constructing dual-volumes which explicitly satisfy all of these properties via convex optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信