关于外转子泵的形状设计和优化

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
J. C. Pareja-Corcho, M. Bartoň, A. Pedrera-Busselo, D. Mejia-Parra, A. Moreno, J. Posada
{"title":"关于外转子泵的形状设计和优化","authors":"J. C. Pareja-Corcho,&nbsp;M. Bartoň,&nbsp;A. Pedrera-Busselo,&nbsp;D. Mejia-Parra,&nbsp;A. Moreno,&nbsp;J. Posada","doi":"10.1111/cgf.15140","DOIUrl":null,"url":null,"abstract":"<p>A gerotor pump is a two-piece mechanism where two rotational components, interior and exterior, engage each other via a rotational motion to transfer a fluid in a direction parallel to their rotational axes. A natural question arises on what shape of the gerotor is the optimal one in the sense of maximum fluid being pumped for a unit of time, given the constraint of a fixed material needed to manufacture the pump. As there is no closed-formula to answer this question, we propose a new algorithm to design and optimize the shape of gerotor pumps to be as efficient as possible. The proposed algorithm is based on a fast construction of the envelope of the interior component and subsequent optimization. We demonstrate our algorithm on a benchmark gerotor and show that the optimized solution increases the estimated flowrate by 16%. We also use our algorithm to study the effect of the number of teeth on the cavity area of a gerotor.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On shape design and optimization of gerotor pumps\",\"authors\":\"J. C. Pareja-Corcho,&nbsp;M. Bartoň,&nbsp;A. Pedrera-Busselo,&nbsp;D. Mejia-Parra,&nbsp;A. Moreno,&nbsp;J. Posada\",\"doi\":\"10.1111/cgf.15140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A gerotor pump is a two-piece mechanism where two rotational components, interior and exterior, engage each other via a rotational motion to transfer a fluid in a direction parallel to their rotational axes. A natural question arises on what shape of the gerotor is the optimal one in the sense of maximum fluid being pumped for a unit of time, given the constraint of a fixed material needed to manufacture the pump. As there is no closed-formula to answer this question, we propose a new algorithm to design and optimize the shape of gerotor pumps to be as efficient as possible. The proposed algorithm is based on a fast construction of the envelope of the interior component and subsequent optimization. We demonstrate our algorithm on a benchmark gerotor and show that the optimized solution increases the estimated flowrate by 16%. We also use our algorithm to study the effect of the number of teeth on the cavity area of a gerotor.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15140\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15140","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

外转子泵是一种两件式机械装置,内部和外部的两个旋转部件通过旋转运动相互啮合,以平行于其旋转轴的方向输送流体。一个自然而然的问题是,考虑到制造泵所需的固定材料的限制,从单位时间内泵送流体量最大的角度来看,什么形状的外转子是最佳的。由于没有封闭公式可以回答这个问题,我们提出了一种新算法来设计和优化动子泵的形状,使其尽可能高效。我们提出的算法基于内部组件包络的快速构建和后续优化。我们在一个基准动子泵上演示了我们的算法,结果表明,优化后的解决方案将估计流量提高了 16%。我们还使用我们的算法研究了齿数对齿轮减速机空腔面积的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On shape design and optimization of gerotor pumps

A gerotor pump is a two-piece mechanism where two rotational components, interior and exterior, engage each other via a rotational motion to transfer a fluid in a direction parallel to their rotational axes. A natural question arises on what shape of the gerotor is the optimal one in the sense of maximum fluid being pumped for a unit of time, given the constraint of a fixed material needed to manufacture the pump. As there is no closed-formula to answer this question, we propose a new algorithm to design and optimize the shape of gerotor pumps to be as efficient as possible. The proposed algorithm is based on a fast construction of the envelope of the interior component and subsequent optimization. We demonstrate our algorithm on a benchmark gerotor and show that the optimized solution increases the estimated flowrate by 16%. We also use our algorithm to study the effect of the number of teeth on the cavity area of a gerotor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信