类型理论和均匀纤维的克里普克-乔亚尔强制力

Steve Awodey, Nicola Gambino, Sina Hazratpour
{"title":"类型理论和均匀纤维的克里普克-乔亚尔强制力","authors":"Steve Awodey, Nicola Gambino, Sina Hazratpour","doi":"10.1007/s00029-024-00962-2","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new method for precisely relating algebraic structures in a presheaf category and judgements of its internal type theory. The method provides a systematic way to organise complex diagrammatic reasoning and generalises the well-known Kripke-Joyal forcing for logic. As an application, we prove several properties of algebraic weak factorisation systems considered in Homotopy Type Theory.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kripke-Joyal forcing for type theory and uniform fibrations\",\"authors\":\"Steve Awodey, Nicola Gambino, Sina Hazratpour\",\"doi\":\"10.1007/s00029-024-00962-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a new method for precisely relating algebraic structures in a presheaf category and judgements of its internal type theory. The method provides a systematic way to organise complex diagrammatic reasoning and generalises the well-known Kripke-Joyal forcing for logic. As an application, we prove several properties of algebraic weak factorisation systems considered in Homotopy Type Theory.\\n</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00962-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00962-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种新方法,用于精确地将预设范畴中的代数结构与其内部类型理论的判断联系起来。这种方法为组织复杂的图解推理提供了一种系统化的方式,并概括了著名的克里普克-乔亚尔(Kripke-Joyal)逻辑强制法。作为应用,我们证明了同调类型理论中考虑的代数弱因式分解系统的几个性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kripke-Joyal forcing for type theory and uniform fibrations

Kripke-Joyal forcing for type theory and uniform fibrations

We introduce a new method for precisely relating algebraic structures in a presheaf category and judgements of its internal type theory. The method provides a systematic way to organise complex diagrammatic reasoning and generalises the well-known Kripke-Joyal forcing for logic. As an application, we prove several properties of algebraic weak factorisation systems considered in Homotopy Type Theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信