仿射半群环顶局部同调模块 HSL 数的明确上限

Havi Ellers
{"title":"仿射半群环顶局部同调模块 HSL 数的明确上限","authors":"Havi Ellers","doi":"arxiv-2407.21731","DOIUrl":null,"url":null,"abstract":"The Hartshorne-Speiser-Lyubeznik number is a numerical invariant that can\noften be used to bound the Frobenius test exponent of positive characteristic\nrings. In this paper we look at positive characteristic semigroup rings\ngenerated by affine torsion-free abelian cancellative pointed semigroups that\ncontain an identity, and compute an upper bound for the\nHartshorne-Speiser-Lyubeznik number of their top local cohomology module at the\nmaximal monomial ideal.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"213 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An explicit upper bound for the HSL number of the top local cohomology module of affine semigroup rings\",\"authors\":\"Havi Ellers\",\"doi\":\"arxiv-2407.21731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hartshorne-Speiser-Lyubeznik number is a numerical invariant that can\\noften be used to bound the Frobenius test exponent of positive characteristic\\nrings. In this paper we look at positive characteristic semigroup rings\\ngenerated by affine torsion-free abelian cancellative pointed semigroups that\\ncontain an identity, and compute an upper bound for the\\nHartshorne-Speiser-Lyubeznik number of their top local cohomology module at the\\nmaximal monomial ideal.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"213 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

哈特肖恩-斯佩塞-柳贝茨尼克数是一个数字不变量,通常可用于约束正特征环的弗罗贝尼斯检验指数。本文研究了由包含一个同一性的仿射无扭无边可取消尖半群生成的正特征半群环,并计算了它们在最大单项式理想处的顶局部同调模块的哈特肖恩-斯佩塞-柳贝兹尼克数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An explicit upper bound for the HSL number of the top local cohomology module of affine semigroup rings
The Hartshorne-Speiser-Lyubeznik number is a numerical invariant that can often be used to bound the Frobenius test exponent of positive characteristic rings. In this paper we look at positive characteristic semigroup rings generated by affine torsion-free abelian cancellative pointed semigroups that contain an identity, and compute an upper bound for the Hartshorne-Speiser-Lyubeznik number of their top local cohomology module at the maximal monomial ideal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信