GraphBPE:分子图与字节对编码的结合

Yuchen Shen, Barnabás Póczos
{"title":"GraphBPE:分子图与字节对编码的结合","authors":"Yuchen Shen, Barnabás Póczos","doi":"arxiv-2407.19039","DOIUrl":null,"url":null,"abstract":"With the increasing attention to molecular machine learning, various\ninnovations have been made in designing better models or proposing more\ncomprehensive benchmarks. However, less is studied on the data preprocessing\nschedule for molecular graphs, where a different view of the molecular graph\ncould potentially boost the model's performance. Inspired by the Byte-Pair\nEncoding (BPE) algorithm, a subword tokenization method popularly adopted in\nNatural Language Processing, we propose GraphBPE, which tokenizes a molecular\ngraph into different substructures and acts as a preprocessing schedule\nindependent of the model architectures. Our experiments on 3 graph-level\nclassification and 3 graph-level regression datasets show that data\npreprocessing could boost the performance of models for molecular graphs, and\nGraphBPE is effective for small classification datasets and it performs on par\nwith other tokenization methods across different model architectures.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GraphBPE: Molecular Graphs Meet Byte-Pair Encoding\",\"authors\":\"Yuchen Shen, Barnabás Póczos\",\"doi\":\"arxiv-2407.19039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing attention to molecular machine learning, various\\ninnovations have been made in designing better models or proposing more\\ncomprehensive benchmarks. However, less is studied on the data preprocessing\\nschedule for molecular graphs, where a different view of the molecular graph\\ncould potentially boost the model's performance. Inspired by the Byte-Pair\\nEncoding (BPE) algorithm, a subword tokenization method popularly adopted in\\nNatural Language Processing, we propose GraphBPE, which tokenizes a molecular\\ngraph into different substructures and acts as a preprocessing schedule\\nindependent of the model architectures. Our experiments on 3 graph-level\\nclassification and 3 graph-level regression datasets show that data\\npreprocessing could boost the performance of models for molecular graphs, and\\nGraphBPE is effective for small classification datasets and it performs on par\\nwith other tokenization methods across different model architectures.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对分子机器学习的关注与日俱增,人们在设计更好的模型或提出更全面的基准方面进行了各种创新。然而,人们对分子图的数据预处理方案研究较少,而对分子图的不同看法有可能提高模型的性能。受字节对编码(BPE)算法的启发,我们提出了 GraphBPE,该算法将分子图标记为不同的子结构,并作为独立于模型架构的预处理时间表。我们在 3 个图级分类和 3 个图级回归数据集上的实验表明,数据预处理可以提高分子图模型的性能,GraphBPE 对小型分类数据集很有效,而且在不同的模型架构下,它的性能与其他标记化方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GraphBPE: Molecular Graphs Meet Byte-Pair Encoding
With the increasing attention to molecular machine learning, various innovations have been made in designing better models or proposing more comprehensive benchmarks. However, less is studied on the data preprocessing schedule for molecular graphs, where a different view of the molecular graph could potentially boost the model's performance. Inspired by the Byte-Pair Encoding (BPE) algorithm, a subword tokenization method popularly adopted in Natural Language Processing, we propose GraphBPE, which tokenizes a molecular graph into different substructures and acts as a preprocessing schedule independent of the model architectures. Our experiments on 3 graph-level classification and 3 graph-level regression datasets show that data preprocessing could boost the performance of models for molecular graphs, and GraphBPE is effective for small classification datasets and it performs on par with other tokenization methods across different model architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信