用于药物发现的量子长短期记忆技术

Liang Zhang, Yin Xu, Mohan Wu, Liang Wang, Hua Xu
{"title":"用于药物发现的量子长短期记忆技术","authors":"Liang Zhang, Yin Xu, Mohan Wu, Liang Wang, Hua Xu","doi":"arxiv-2407.19852","DOIUrl":null,"url":null,"abstract":"Quantum computing combined with machine learning (ML) is an extremely\npromising research area, with numerous studies demonstrating that quantum\nmachine learning (QML) is expected to solve scientific problems more\neffectively than classical ML. In this work, we successfully apply QML to drug\ndiscovery, showing that QML can significantly improve model performance and\nachieve faster convergence compared to classical ML. Moreover, we demonstrate\nthat the model accuracy of the QML improves as the number of qubits increases.\nWe also introduce noise to the QML model and find that it has little effect on\nour experimental conclusions, illustrating the high robustness of the QML\nmodel. This work highlights the potential application of quantum computing to\nyield significant benefits for scientific advancement as the qubit quantity\nincrease and quality improvement in the future.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Long Short-Term Memory for Drug Discovery\",\"authors\":\"Liang Zhang, Yin Xu, Mohan Wu, Liang Wang, Hua Xu\",\"doi\":\"arxiv-2407.19852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing combined with machine learning (ML) is an extremely\\npromising research area, with numerous studies demonstrating that quantum\\nmachine learning (QML) is expected to solve scientific problems more\\neffectively than classical ML. In this work, we successfully apply QML to drug\\ndiscovery, showing that QML can significantly improve model performance and\\nachieve faster convergence compared to classical ML. Moreover, we demonstrate\\nthat the model accuracy of the QML improves as the number of qubits increases.\\nWe also introduce noise to the QML model and find that it has little effect on\\nour experimental conclusions, illustrating the high robustness of the QML\\nmodel. This work highlights the potential application of quantum computing to\\nyield significant benefits for scientific advancement as the qubit quantity\\nincrease and quality improvement in the future.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子计算与机器学习(ML)的结合是一个极具前景的研究领域,大量研究表明,量子机器学习(QML)有望比经典 ML 更有效地解决科学问题。在这项工作中,我们成功地将量子机器学习应用于药物发现,表明与经典 ML 相比,量子机器学习可以显著提高模型性能,并实现更快的收敛。我们还在 QML 模型中引入了噪声,结果发现噪声对我们的实验结论影响甚微,这说明 QML 模型具有很高的鲁棒性。这项工作凸显了量子计算的潜在应用,随着量子比特数量的增加和质量的提高,未来量子计算玩具将为科学进步带来巨大利益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Long Short-Term Memory for Drug Discovery
Quantum computing combined with machine learning (ML) is an extremely promising research area, with numerous studies demonstrating that quantum machine learning (QML) is expected to solve scientific problems more effectively than classical ML. In this work, we successfully apply QML to drug discovery, showing that QML can significantly improve model performance and achieve faster convergence compared to classical ML. Moreover, we demonstrate that the model accuracy of the QML improves as the number of qubits increases. We also introduce noise to the QML model and find that it has little effect on our experimental conclusions, illustrating the high robustness of the QML model. This work highlights the potential application of quantum computing to yield significant benefits for scientific advancement as the qubit quantity increase and quality improvement in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信