建立火灾科学和管理工作流程的综合绩效框架

H. Ahmed, R. Shende, I. Perez, D. Crawl, S. Purawat, I. Altintas
{"title":"建立火灾科学和管理工作流程的综合绩效框架","authors":"H. Ahmed, R. Shende, I. Perez, D. Crawl, S. Purawat, I. Altintas","doi":"arxiv-2407.21231","DOIUrl":null,"url":null,"abstract":"Reliable performance metrics are necessary prerequisites to building\nlarge-scale end-to-end integrated workflows for collaborative scientific\nresearch, particularly within context of use-inspired decision making platforms\nwith many concurrent users and when computing real-time and urgent results\nusing large data. This work is a building block for the National Data Platform,\nwhich leverages multiple use-cases including the WIFIRE Data and Model Commons\nfor wildfire behavior modeling and the EarthScope Consortium for collaborative\ngeophysical research. This paper presents an artificial intelligence and\nmachine learning (AI/ML) approach to performance assessment and optimization of\nscientific workflows. An associated early AI/ML framework spanning performance\ndata collection, prediction and optimization is applied to wildfire science\napplications within the WIFIRE BurnPro3D (BP3D) platform for proactive fire\nmanagement and mitigation.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"221 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards an Integrated Performance Framework for Fire Science and Management Workflows\",\"authors\":\"H. Ahmed, R. Shende, I. Perez, D. Crawl, S. Purawat, I. Altintas\",\"doi\":\"arxiv-2407.21231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable performance metrics are necessary prerequisites to building\\nlarge-scale end-to-end integrated workflows for collaborative scientific\\nresearch, particularly within context of use-inspired decision making platforms\\nwith many concurrent users and when computing real-time and urgent results\\nusing large data. This work is a building block for the National Data Platform,\\nwhich leverages multiple use-cases including the WIFIRE Data and Model Commons\\nfor wildfire behavior modeling and the EarthScope Consortium for collaborative\\ngeophysical research. This paper presents an artificial intelligence and\\nmachine learning (AI/ML) approach to performance assessment and optimization of\\nscientific workflows. An associated early AI/ML framework spanning performance\\ndata collection, prediction and optimization is applied to wildfire science\\napplications within the WIFIRE BurnPro3D (BP3D) platform for proactive fire\\nmanagement and mitigation.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"221 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可靠的性能指标是为协作式科学研究构建大规模端到端集成工作流的必要前提,尤其是在拥有众多并发用户的使用启发决策平台中,以及在使用海量数据计算实时和紧急结果时。这项工作是国家数据平台的基石,该平台利用了多种用例,包括用于野火行为建模的 WIFIRE 数据和模型公共平台,以及用于地球物理合作研究的 EarthScope 联合会。本文介绍了一种人工智能和机器学习(AI/ML)方法,用于科学工作流的性能评估和优化。相关的早期 AI/ML 框架涵盖了性能数据收集、预测和优化,被应用于 WIFIRE BurnPro3D (BP3D) 平台中的野火科学应用,以实现主动的火灾管理和缓解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards an Integrated Performance Framework for Fire Science and Management Workflows
Reliable performance metrics are necessary prerequisites to building large-scale end-to-end integrated workflows for collaborative scientific research, particularly within context of use-inspired decision making platforms with many concurrent users and when computing real-time and urgent results using large data. This work is a building block for the National Data Platform, which leverages multiple use-cases including the WIFIRE Data and Model Commons for wildfire behavior modeling and the EarthScope Consortium for collaborative geophysical research. This paper presents an artificial intelligence and machine learning (AI/ML) approach to performance assessment and optimization of scientific workflows. An associated early AI/ML framework spanning performance data collection, prediction and optimization is applied to wildfire science applications within the WIFIRE BurnPro3D (BP3D) platform for proactive fire management and mitigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信