有限通道中库特流附近二维磁流体力学系统的渐近稳定性

IF 1.4 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED
Fengjie Luo, Limei Li, Liangliang Ma
{"title":"有限通道中库特流附近二维磁流体力学系统的渐近稳定性","authors":"Fengjie Luo, Limei Li, Liangliang Ma","doi":"10.1007/s44198-024-00217-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the asymptotic stability of the incompressible two-dimensional(2D) magnetohydrodynamic(MHD) system near the Couette flow at high Reynolds number and high magnetic Reynolds number in a finite channel <span>\\(\\Omega =\\mathbb {T}\\times [-1,1]\\)</span>. We extend the results of the Navier–Stokes equations (for the previous results see[10]) to the MHD system. We prove that if the initial velocity <span>\\(V_{in}\\)</span> and the initial magnetic field <span>\\(B_{in}\\)</span> satisfy <span>\\(\\Vert \\left( V_{in}-(y,0), B_{in}-(1,0)\\right) \\Vert _{H_{x,y}^{2}}\\le \\epsilon \\text {min}\\{\\nu ,\\mu \\}^\\frac{1}{2}\\)</span> for some small <span>\\(\\epsilon\\)</span> independent of <span>\\(\\nu ,\\mu\\)</span>, then the solution of the system remains within <span>\\(\\mathcal{O}(\\text {min}\\{\\nu ,\\mu \\}^\\frac{1}{2})\\)</span> of Couette flow, and close to Couette flow as <span>\\(t\\rightarrow \\infty\\)</span>; the magnetic field remains within <span>\\(\\mathcal{O}(\\text {min}\\{\\nu ,\\mu \\}^\\frac{1}{2})\\)</span> of the (1, 0), and close to (1, 0) as <span>\\(t\\rightarrow \\infty\\)</span>.</p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"77 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Stability of Two-Dimensional Magnetohydrodynamic System Near the Couette Flow in a Finite Channel\",\"authors\":\"Fengjie Luo, Limei Li, Liangliang Ma\",\"doi\":\"10.1007/s44198-024-00217-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the asymptotic stability of the incompressible two-dimensional(2D) magnetohydrodynamic(MHD) system near the Couette flow at high Reynolds number and high magnetic Reynolds number in a finite channel <span>\\\\(\\\\Omega =\\\\mathbb {T}\\\\times [-1,1]\\\\)</span>. We extend the results of the Navier–Stokes equations (for the previous results see[10]) to the MHD system. We prove that if the initial velocity <span>\\\\(V_{in}\\\\)</span> and the initial magnetic field <span>\\\\(B_{in}\\\\)</span> satisfy <span>\\\\(\\\\Vert \\\\left( V_{in}-(y,0), B_{in}-(1,0)\\\\right) \\\\Vert _{H_{x,y}^{2}}\\\\le \\\\epsilon \\\\text {min}\\\\{\\\\nu ,\\\\mu \\\\}^\\\\frac{1}{2}\\\\)</span> for some small <span>\\\\(\\\\epsilon\\\\)</span> independent of <span>\\\\(\\\\nu ,\\\\mu\\\\)</span>, then the solution of the system remains within <span>\\\\(\\\\mathcal{O}(\\\\text {min}\\\\{\\\\nu ,\\\\mu \\\\}^\\\\frac{1}{2})\\\\)</span> of Couette flow, and close to Couette flow as <span>\\\\(t\\\\rightarrow \\\\infty\\\\)</span>; the magnetic field remains within <span>\\\\(\\\\mathcal{O}(\\\\text {min}\\\\{\\\\nu ,\\\\mu \\\\}^\\\\frac{1}{2})\\\\)</span> of the (1, 0), and close to (1, 0) as <span>\\\\(t\\\\rightarrow \\\\infty\\\\)</span>.</p>\",\"PeriodicalId\":48904,\"journal\":{\"name\":\"Journal of Nonlinear Mathematical Physics\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s44198-024-00217-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-024-00217-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了不可压缩二维(2D)磁流体力学(MHD)系统在有限通道(\Omega =\mathbb {T}\times [-1,1]\)中高雷诺数和高磁雷诺数下靠近库特流的渐近稳定性。我们将纳维-斯托克斯方程的结果(之前的结果见[10])扩展到 MHD 系统。我们证明,如果初始速度(V_{in}\)和初始磁场(B_{in}\)满足(\Vert \left( V_{in}-(y,0), B_{in}-(1,0)\right) \Vert _{H_{x,y}^{2}}\le \epsilon \text {min}\{\nu 、\对于某个独立于 (\nu ,\mu)的小 (\epsilon),系统的解保持在 (\mathcal{O}(\text {min}\{nu 、\Couette flow)的范围内,并且接近于 Couette flow,即 \(t\rightarrow \infty\);磁场保持在(1,0)的(mathcal{O}(\text {min}\{nu ,\mu \}^\frac{1}{2})范围内,并接近(1,0)为(t\rightarrow \infty\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Stability of Two-Dimensional Magnetohydrodynamic System Near the Couette Flow in a Finite Channel

In this paper, we consider the asymptotic stability of the incompressible two-dimensional(2D) magnetohydrodynamic(MHD) system near the Couette flow at high Reynolds number and high magnetic Reynolds number in a finite channel \(\Omega =\mathbb {T}\times [-1,1]\). We extend the results of the Navier–Stokes equations (for the previous results see[10]) to the MHD system. We prove that if the initial velocity \(V_{in}\) and the initial magnetic field \(B_{in}\) satisfy \(\Vert \left( V_{in}-(y,0), B_{in}-(1,0)\right) \Vert _{H_{x,y}^{2}}\le \epsilon \text {min}\{\nu ,\mu \}^\frac{1}{2}\) for some small \(\epsilon\) independent of \(\nu ,\mu\), then the solution of the system remains within \(\mathcal{O}(\text {min}\{\nu ,\mu \}^\frac{1}{2})\) of Couette flow, and close to Couette flow as \(t\rightarrow \infty\); the magnetic field remains within \(\mathcal{O}(\text {min}\{\nu ,\mu \}^\frac{1}{2})\) of the (1, 0), and close to (1, 0) as \(t\rightarrow \infty\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonlinear Mathematical Physics
Journal of Nonlinear Mathematical Physics PHYSICS, MATHEMATICAL-PHYSICS, MATHEMATICAL
CiteScore
1.60
自引率
0.00%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles. Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics. The main subjects are: -Nonlinear Equations of Mathematical Physics- Quantum Algebras and Integrability- Discrete Integrable Systems and Discrete Geometry- Applications of Lie Group Theory and Lie Algebras- Non-Commutative Geometry- Super Geometry and Super Integrable System- Integrability and Nonintegrability, Painleve Analysis- Inverse Scattering Method- Geometry of Soliton Equations and Applications of Twistor Theory- Classical and Quantum Many Body Problems- Deformation and Geometric Quantization- Instanton, Monopoles and Gauge Theory- Differential Geometry and Mathematical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信