粘弹性杆和板的非线性 Volterra 积分微分方程的数值分析

IF 1.4 2区 数学 Q1 MATHEMATICS
Calcolo Pub Date : 2024-07-31 DOI:10.1007/s10092-024-00607-y
Wenlin Qiu, Yiqun Li, Xiangcheng Zheng
{"title":"粘弹性杆和板的非线性 Volterra 积分微分方程的数值分析","authors":"Wenlin Qiu, Yiqun Li, Xiangcheng Zheng","doi":"10.1007/s10092-024-00607-y","DOIUrl":null,"url":null,"abstract":"<p>This work considers the numerical analysis of nonlinear Volterra integrodifferential equations that arise from, e.g., the theory of isotropic viscoelastic rods and plates. Novel properties of the kernel and its derivatives are derived via the Laplace transform, and the regularity of the solutions is proved. Then we apply the Crank–Nicolson method and the second-order convolution quadrature rule to develop the discrete-in-time scheme, and the energy argument is employed to analyze the stability and convergence of the proposed scheme. Numerical experiments are performed to substantiate the theoretical findings.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":"49 4 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of nonlinear Volterra integrodifferential equations for viscoelastic rods and plates\",\"authors\":\"Wenlin Qiu, Yiqun Li, Xiangcheng Zheng\",\"doi\":\"10.1007/s10092-024-00607-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work considers the numerical analysis of nonlinear Volterra integrodifferential equations that arise from, e.g., the theory of isotropic viscoelastic rods and plates. Novel properties of the kernel and its derivatives are derived via the Laplace transform, and the regularity of the solutions is proved. Then we apply the Crank–Nicolson method and the second-order convolution quadrature rule to develop the discrete-in-time scheme, and the energy argument is employed to analyze the stability and convergence of the proposed scheme. Numerical experiments are performed to substantiate the theoretical findings.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":\"49 4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00607-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00607-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究考虑了非线性 Volterra 积分微分方程的数值分析,这些方程产生于各向同性粘弹性杆和板的理论等。通过拉普拉斯变换得出了核及其导数的新特性,并证明了解的正则性。然后,我们应用 Crank-Nicolson 方法和二阶卷积正交规则建立了离散时间方案,并利用能量论证分析了所提方案的稳定性和收敛性。我们还进行了数值实验来证实理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis of nonlinear Volterra integrodifferential equations for viscoelastic rods and plates

This work considers the numerical analysis of nonlinear Volterra integrodifferential equations that arise from, e.g., the theory of isotropic viscoelastic rods and plates. Novel properties of the kernel and its derivatives are derived via the Laplace transform, and the regularity of the solutions is proved. Then we apply the Crank–Nicolson method and the second-order convolution quadrature rule to develop the discrete-in-time scheme, and the energy argument is employed to analyze the stability and convergence of the proposed scheme. Numerical experiments are performed to substantiate the theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Calcolo
Calcolo 数学-数学
CiteScore
2.40
自引率
11.80%
发文量
36
审稿时长
>12 weeks
期刊介绍: Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation. The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory. Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信