用最大函数法估算双相问题整个空间的梯度

Pub Date : 2024-08-01 DOI:10.1007/s11785-024-01579-1
Beilei Zhang, Bin Ge
{"title":"用最大函数法估算双相问题整个空间的梯度","authors":"Beilei Zhang, Bin Ge","doi":"10.1007/s11785-024-01579-1","DOIUrl":null,"url":null,"abstract":"<p>Within this article, the maximal function method is used to establish the Calderón-Zygmund estimates for the weak solutions of a class of non-uniformly elliptic equations </p><span>$$\\begin{aligned} -\\textrm{div}A(x,Du)=-\\textrm{div}F(x,f) \\quad in \\quad {\\mathbb {R}}^n, \\end{aligned}$$</span><p>where <span>\\(A(x,Du)\\approx |Du|^{p_1-2}+\\mu (x)|Du|^{p_2-2}\\)</span>, <span>\\(F(x,f)\\approx |f|^{p_1-2}+\\mu (x)|f|^{p_2-2}\\)</span> and <span>\\(1&lt;p_1&lt;p_2\\)</span>, <span>\\(0\\le \\mu (\\cdot )\\in C^{0,\\alpha }({\\mathbb {R}}^n),\\;\\alpha \\in (0,1]\\)</span>. The aforementioned problems arise as Euler-Lagrange equations for variational functionals that were originally presented and studied within the context of Homogenization and the Lavrentiev phenomenon by Marcellini (Arch Ration Mech Anal 105:267–284, 1989. https://doi.org/10.1007/BF00251503) and Zhikov (Izv Akad Nauk SSSR Ser Mat 29:33–66, 1987. https://doi.org/10.1070/IM1987v029n01ABEH000958). They are distinctive in that they exhibit that the growth and ellipticity change between two distinct types of polynomial depending on the position. This feature is characteristic of strongly anisotropic materials. The contribution of this paper is closely tied to the significant advancements made by Colombo and Mingione (J Funct Anal 270:1416–1478, 2016. https://doi.org/10.1016/j.jfa.2015.06.022) in the qualitative analysis of double phase problems, as well as the related techniques used by Zhang et al. (Ann Polon Math, 114:45–65, 2015. https://doi.org/10.4064/ap114-1-4).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient Estimates in the Whole Space for the Double Phase Problems by the Maximal Function Method\",\"authors\":\"Beilei Zhang, Bin Ge\",\"doi\":\"10.1007/s11785-024-01579-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Within this article, the maximal function method is used to establish the Calderón-Zygmund estimates for the weak solutions of a class of non-uniformly elliptic equations </p><span>$$\\\\begin{aligned} -\\\\textrm{div}A(x,Du)=-\\\\textrm{div}F(x,f) \\\\quad in \\\\quad {\\\\mathbb {R}}^n, \\\\end{aligned}$$</span><p>where <span>\\\\(A(x,Du)\\\\approx |Du|^{p_1-2}+\\\\mu (x)|Du|^{p_2-2}\\\\)</span>, <span>\\\\(F(x,f)\\\\approx |f|^{p_1-2}+\\\\mu (x)|f|^{p_2-2}\\\\)</span> and <span>\\\\(1&lt;p_1&lt;p_2\\\\)</span>, <span>\\\\(0\\\\le \\\\mu (\\\\cdot )\\\\in C^{0,\\\\alpha }({\\\\mathbb {R}}^n),\\\\;\\\\alpha \\\\in (0,1]\\\\)</span>. The aforementioned problems arise as Euler-Lagrange equations for variational functionals that were originally presented and studied within the context of Homogenization and the Lavrentiev phenomenon by Marcellini (Arch Ration Mech Anal 105:267–284, 1989. https://doi.org/10.1007/BF00251503) and Zhikov (Izv Akad Nauk SSSR Ser Mat 29:33–66, 1987. https://doi.org/10.1070/IM1987v029n01ABEH000958). They are distinctive in that they exhibit that the growth and ellipticity change between two distinct types of polynomial depending on the position. This feature is characteristic of strongly anisotropic materials. The contribution of this paper is closely tied to the significant advancements made by Colombo and Mingione (J Funct Anal 270:1416–1478, 2016. https://doi.org/10.1016/j.jfa.2015.06.022) in the qualitative analysis of double phase problems, as well as the related techniques used by Zhang et al. (Ann Polon Math, 114:45–65, 2015. https://doi.org/10.4064/ap114-1-4).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01579-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01579-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文使用最大函数法建立了一类非均匀椭圆方程的弱解的 Calderón-Zygmund 估计 $$\begin{aligned} -\textrm{div}A(x、Du)=-\textrm{div}F(x,f) \quad in \quad {\mathbb {R}}^n, \end{aligned}$$ 其中 \(A(x,Du)\approx |Du|^{p_1-2}+\mu (x)|Du|^{p_2-2}\), \(F(x,f)\approx |f|^{p_1-2}+\mu (x)|f|^{p_2-2}\) and \(1<;p_1<p_2\),\(0\le \mu (\cdot )\in C^{0,\alpha }({\mathbb {R}}^n),\;\alpha \in (0,1]\).上述问题作为变分函数的欧拉-拉格朗日方程出现,最初是由 Marcellini (Arch Ration Mech Anal 105:267-284, 1989. https://doi.org/10.1007/BF00251503) 和 Zhikov (Izv Akad Nauk SSSR Ser Mat 29:33-66, 1987. https://doi.org/10.1070/IM1987v029n01ABEH000958) 在均质化和拉夫连季耶夫现象的背景下提出并研究的。它们的与众不同之处在于,根据位置的不同,其增长和椭圆度会在两种不同类型的多项式之间发生变化。这一特征是强各向异性材料的特征。本文的贡献与 Colombo 和 Mingione(J Funct Anal 270:1416-1478, 2016. https://doi.org/10.1016/j.jfa.2015.06.022)在双相问题定性分析方面取得的重大进展以及 Zhang 等人(Ann Polon Math, 114:45-65, 2015. https://doi.org/10.4064/ap114-1-4)使用的相关技术密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Gradient Estimates in the Whole Space for the Double Phase Problems by the Maximal Function Method

Within this article, the maximal function method is used to establish the Calderón-Zygmund estimates for the weak solutions of a class of non-uniformly elliptic equations

$$\begin{aligned} -\textrm{div}A(x,Du)=-\textrm{div}F(x,f) \quad in \quad {\mathbb {R}}^n, \end{aligned}$$

where \(A(x,Du)\approx |Du|^{p_1-2}+\mu (x)|Du|^{p_2-2}\), \(F(x,f)\approx |f|^{p_1-2}+\mu (x)|f|^{p_2-2}\) and \(1<p_1<p_2\), \(0\le \mu (\cdot )\in C^{0,\alpha }({\mathbb {R}}^n),\;\alpha \in (0,1]\). The aforementioned problems arise as Euler-Lagrange equations for variational functionals that were originally presented and studied within the context of Homogenization and the Lavrentiev phenomenon by Marcellini (Arch Ration Mech Anal 105:267–284, 1989. https://doi.org/10.1007/BF00251503) and Zhikov (Izv Akad Nauk SSSR Ser Mat 29:33–66, 1987. https://doi.org/10.1070/IM1987v029n01ABEH000958). They are distinctive in that they exhibit that the growth and ellipticity change between two distinct types of polynomial depending on the position. This feature is characteristic of strongly anisotropic materials. The contribution of this paper is closely tied to the significant advancements made by Colombo and Mingione (J Funct Anal 270:1416–1478, 2016. https://doi.org/10.1016/j.jfa.2015.06.022) in the qualitative analysis of double phase problems, as well as the related techniques used by Zhang et al. (Ann Polon Math, 114:45–65, 2015. https://doi.org/10.4064/ap114-1-4).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信