{"title":"求解随机伊托-伏特拉积分方程的快速准确数值算法","authors":"Rebiha Zeghdane","doi":"10.1007/s11075-024-01898-6","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to present a simple numerical technique for approximating the solutions of stochastic Volterra integral equations. The proposed method depends on the Picard iteration and uses a suitable quadrature rule. Error estimates and associated theorems have been proved for this proposed technique. Some test examples have been studied to verify the applicability and accuracy of the proposed technique.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"80 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and accurate numerical algorithm for solving stochastic Itô-Volterra integral equations\",\"authors\":\"Rebiha Zeghdane\",\"doi\":\"10.1007/s11075-024-01898-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this paper is to present a simple numerical technique for approximating the solutions of stochastic Volterra integral equations. The proposed method depends on the Picard iteration and uses a suitable quadrature rule. Error estimates and associated theorems have been proved for this proposed technique. Some test examples have been studied to verify the applicability and accuracy of the proposed technique.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01898-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01898-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Fast and accurate numerical algorithm for solving stochastic Itô-Volterra integral equations
The purpose of this paper is to present a simple numerical technique for approximating the solutions of stochastic Volterra integral equations. The proposed method depends on the Picard iteration and uses a suitable quadrature rule. Error estimates and associated theorems have been proved for this proposed technique. Some test examples have been studied to verify the applicability and accuracy of the proposed technique.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.