一般二阶振荡系统的扩展显式伪两步 Runge-Kutta-Nyström 方法

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Yonglei Fang, Changying Liu, Xiong You
{"title":"一般二阶振荡系统的扩展显式伪两步 Runge-Kutta-Nyström 方法","authors":"Yonglei Fang, Changying Liu, Xiong You","doi":"10.1007/s11075-024-01896-8","DOIUrl":null,"url":null,"abstract":"<p>Explicit pseudo two-step extended Runge-Kutta-Nyström (EPTSERKN) methods for the numerical integration of general second-order oscillatory differential systems are discussed in this paper. New explicit pseudo two-step Runge-Kutta-Nyström (EPTSRKN) methods and explicit extended Runge-Kutta-Nyström (ERKN) methods are derived. We give the global error analysis of the new methods. The <i>s</i>-stages new methods are of order <span>\\(s+1\\)</span> with some suitable nodes. Numerical experiments are carried out to show the efficiency and robustness of the new methods.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"2 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended explicit Pseudo two-step Runge-Kutta-Nyström methods for general second-order oscillatory systems\",\"authors\":\"Yonglei Fang, Changying Liu, Xiong You\",\"doi\":\"10.1007/s11075-024-01896-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Explicit pseudo two-step extended Runge-Kutta-Nyström (EPTSERKN) methods for the numerical integration of general second-order oscillatory differential systems are discussed in this paper. New explicit pseudo two-step Runge-Kutta-Nyström (EPTSRKN) methods and explicit extended Runge-Kutta-Nyström (ERKN) methods are derived. We give the global error analysis of the new methods. The <i>s</i>-stages new methods are of order <span>\\\\(s+1\\\\)</span> with some suitable nodes. Numerical experiments are carried out to show the efficiency and robustness of the new methods.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01896-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01896-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了用于一般二阶振荡微分系统数值积分的显式伪两步扩展 Runge-Kutta-Nyström (EPTSERKN) 方法。推导了新的显式伪两步 Runge-Kutta-Nyström (EPTSRKN) 方法和显式扩展 Runge-Kutta-Nyström (ERKN) 方法。我们给出了新方法的全局误差分析。新方法的 s 阶为 \(s+1\) 阶,有一些合适的节点。我们通过数值实验证明了新方法的效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Extended explicit Pseudo two-step Runge-Kutta-Nyström methods for general second-order oscillatory systems

Extended explicit Pseudo two-step Runge-Kutta-Nyström methods for general second-order oscillatory systems

Explicit pseudo two-step extended Runge-Kutta-Nyström (EPTSERKN) methods for the numerical integration of general second-order oscillatory differential systems are discussed in this paper. New explicit pseudo two-step Runge-Kutta-Nyström (EPTSRKN) methods and explicit extended Runge-Kutta-Nyström (ERKN) methods are derived. We give the global error analysis of the new methods. The s-stages new methods are of order \(s+1\) with some suitable nodes. Numerical experiments are carried out to show the efficiency and robustness of the new methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信