{"title":"线性弹性界面问题的广义弱 Galerkin 有限元方法","authors":"Yue Wang, Fuzheng Gao","doi":"10.1007/s11075-024-01904-x","DOIUrl":null,"url":null,"abstract":"<p>A generalized weak Galerkin finite element method for linear elasticity interface problems is presented. The generalized weak gradient (divergence) is consisted of classical gradient (divergence) and the solution of local problem. Thus, the finite element space can be extended to arbitrary combination of piecewise polynomial spaces. The error equation and error estimates are proved. The numerical results illustrate the efficiency and flexibility for different interfaces, partitions and combinations, the locking-free property, the well performance for low regularity solution in discrete energy, <span>\\(L^2\\)</span> and <span>\\(L^{\\infty }\\)</span> norms. Meanwhile, we present the numerical comparison between our algorithm and the weak Galerkin finite element algorithm to demonstrate the flexibility of our algorithm. In addition, for some cases, the convergence rates in numerical tests are obviously higher than the theoretical prediction for the smooth and low regularity solutions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized weak Galerkin finite element method for linear elasticity interface problems\",\"authors\":\"Yue Wang, Fuzheng Gao\",\"doi\":\"10.1007/s11075-024-01904-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A generalized weak Galerkin finite element method for linear elasticity interface problems is presented. The generalized weak gradient (divergence) is consisted of classical gradient (divergence) and the solution of local problem. Thus, the finite element space can be extended to arbitrary combination of piecewise polynomial spaces. The error equation and error estimates are proved. The numerical results illustrate the efficiency and flexibility for different interfaces, partitions and combinations, the locking-free property, the well performance for low regularity solution in discrete energy, <span>\\\\(L^2\\\\)</span> and <span>\\\\(L^{\\\\infty }\\\\)</span> norms. Meanwhile, we present the numerical comparison between our algorithm and the weak Galerkin finite element algorithm to demonstrate the flexibility of our algorithm. In addition, for some cases, the convergence rates in numerical tests are obviously higher than the theoretical prediction for the smooth and low regularity solutions.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01904-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01904-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Generalized weak Galerkin finite element method for linear elasticity interface problems
A generalized weak Galerkin finite element method for linear elasticity interface problems is presented. The generalized weak gradient (divergence) is consisted of classical gradient (divergence) and the solution of local problem. Thus, the finite element space can be extended to arbitrary combination of piecewise polynomial spaces. The error equation and error estimates are proved. The numerical results illustrate the efficiency and flexibility for different interfaces, partitions and combinations, the locking-free property, the well performance for low regularity solution in discrete energy, \(L^2\) and \(L^{\infty }\) norms. Meanwhile, we present the numerical comparison between our algorithm and the weak Galerkin finite element algorithm to demonstrate the flexibility of our algorithm. In addition, for some cases, the convergence rates in numerical tests are obviously higher than the theoretical prediction for the smooth and low regularity solutions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.