卡普托分数导数的提霍诺夫式正则化方法

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Nguyen Van Duc, Thi-Phong Nguyen, Nguyen Phuong Ha, Nguyen The Anh, Luu Duc Manh, Hoang Cong Gia Bao
{"title":"卡普托分数导数的提霍诺夫式正则化方法","authors":"Nguyen Van Duc, Thi-Phong Nguyen, Nguyen Phuong Ha, Nguyen The Anh, Luu Duc Manh, Hoang Cong Gia Bao","doi":"10.1007/s11075-024-01883-z","DOIUrl":null,"url":null,"abstract":"<p>Stability estimates of Hölder type for the problem of evaluating the Caputo fractional derivative are obtained. This ill-posed problem is regularized by a Tikhonov-type method, which guarantees error estimates of Hölder type. Numerical results are presented to confirm the theory.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"44 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tikhonov-type regularization method for Caputo fractional derivative\",\"authors\":\"Nguyen Van Duc, Thi-Phong Nguyen, Nguyen Phuong Ha, Nguyen The Anh, Luu Duc Manh, Hoang Cong Gia Bao\",\"doi\":\"10.1007/s11075-024-01883-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stability estimates of Hölder type for the problem of evaluating the Caputo fractional derivative are obtained. This ill-posed problem is regularized by a Tikhonov-type method, which guarantees error estimates of Hölder type. Numerical results are presented to confirm the theory.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01883-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01883-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

针对卡普托分数导数的求值问题,获得了霍尔德类型的稳定性估计。这个问题是由一种 Tikhonov 型方法正则化的,它保证了霍尔德类型的误差估计。数值结果证实了这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Tikhonov-type regularization method for Caputo fractional derivative

A Tikhonov-type regularization method for Caputo fractional derivative

Stability estimates of Hölder type for the problem of evaluating the Caputo fractional derivative are obtained. This ill-posed problem is regularized by a Tikhonov-type method, which guarantees error estimates of Hölder type. Numerical results are presented to confirm the theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信