Andrea Colesanti, Elisa Francini, Galyna Livshyts, Paolo Salani
{"title":"奥恩斯坦-乌伦贝克算子第一特征值的布伦-闵科夫斯基不等式和相关特征函数的对数凹性","authors":"Andrea Colesanti, Elisa Francini, Galyna Livshyts, Paolo Salani","doi":"arxiv-2407.21354","DOIUrl":null,"url":null,"abstract":"We prove that the first (nontrivial) Dirichlet eigenvalue of the\nOrnstein-Uhlenbeck operator $$ L(u)=\\Delta u-\\langle\\nabla u,x\\rangle\\,, $$ as\na function of the domain, is convex with respect to the Minkowski addition, and\nwe characterize the equality cases in some classes of convex sets. We also\nprove that the corresponding (positive) eigenfunction is log-concave if the\ndomain is convex.","PeriodicalId":501444,"journal":{"name":"arXiv - MATH - Metric Geometry","volume":"362 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Brunn-Minkowski inequality for the first eigenvalue of the Ornstein-Uhlenbeck operator and log-concavity of the relevant eigenfunction\",\"authors\":\"Andrea Colesanti, Elisa Francini, Galyna Livshyts, Paolo Salani\",\"doi\":\"arxiv-2407.21354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the first (nontrivial) Dirichlet eigenvalue of the\\nOrnstein-Uhlenbeck operator $$ L(u)=\\\\Delta u-\\\\langle\\\\nabla u,x\\\\rangle\\\\,, $$ as\\na function of the domain, is convex with respect to the Minkowski addition, and\\nwe characterize the equality cases in some classes of convex sets. We also\\nprove that the corresponding (positive) eigenfunction is log-concave if the\\ndomain is convex.\",\"PeriodicalId\":501444,\"journal\":{\"name\":\"arXiv - MATH - Metric Geometry\",\"volume\":\"362 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Metric Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Metric Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Brunn-Minkowski inequality for the first eigenvalue of the Ornstein-Uhlenbeck operator and log-concavity of the relevant eigenfunction
We prove that the first (nontrivial) Dirichlet eigenvalue of the
Ornstein-Uhlenbeck operator $$ L(u)=\Delta u-\langle\nabla u,x\rangle\,, $$ as
a function of the domain, is convex with respect to the Minkowski addition, and
we characterize the equality cases in some classes of convex sets. We also
prove that the corresponding (positive) eigenfunction is log-concave if the
domain is convex.