$mathbf{H}^2\!

Arnasli Yahya, Jenő Szirmai
{"title":"$mathbf{H}^2\\!","authors":"Arnasli Yahya, Jenő Szirmai","doi":"arxiv-2407.21251","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new record for the densest geodesic congruent\nball packing configurations in $\\mathbf{H}^2\\!\\times\\!\\mathbf{R}$ geometry,\ngenerated by screw motion groups. These groups are derived from the direct\nproduct of rotational groups on $\\mathbf{H}^2$ and some translation components\non the real fibre direction $\\mathbf{R}$ that can be determined by the\ncorresponding Frobenius congruences. Moreover, we developed a procedure to\ndetermine the optimal radius for the densest geodesic ball packing\nconfigurations related to the considered screw motion groups. The highest\npacking density, $\\approx0.80529$, is achieved by a multi-transitive case given\nby rotational parameters $(2,20,4)$. E. Moln\\'{a}r demonstrated that\nhomogeneous 3-spaces can be uniformly interpreted in the projective 3-sphere\n$\\mathcal{PS}^3(\\mathbf{V}^4, \\boldsymbol{V}_4, \\mathbf{R})$. We use this\nprojective model of $\\mathbf{H}^2\\!\\times\\!\\mathbf{R}$ to compute and visualize\nthe locally optimal geodesic ball arrangements.","PeriodicalId":501444,"journal":{"name":"arXiv - MATH - Metric Geometry","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New lower bound for the optimal congruent geodesic ball packing density of screw motion groups in $\\\\mathbf{H}^2\\\\!\\\\times\\\\!\\\\mathbf{R}$ space\",\"authors\":\"Arnasli Yahya, Jenő Szirmai\",\"doi\":\"arxiv-2407.21251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new record for the densest geodesic congruent\\nball packing configurations in $\\\\mathbf{H}^2\\\\!\\\\times\\\\!\\\\mathbf{R}$ geometry,\\ngenerated by screw motion groups. These groups are derived from the direct\\nproduct of rotational groups on $\\\\mathbf{H}^2$ and some translation components\\non the real fibre direction $\\\\mathbf{R}$ that can be determined by the\\ncorresponding Frobenius congruences. Moreover, we developed a procedure to\\ndetermine the optimal radius for the densest geodesic ball packing\\nconfigurations related to the considered screw motion groups. The highest\\npacking density, $\\\\approx0.80529$, is achieved by a multi-transitive case given\\nby rotational parameters $(2,20,4)$. E. Moln\\\\'{a}r demonstrated that\\nhomogeneous 3-spaces can be uniformly interpreted in the projective 3-sphere\\n$\\\\mathcal{PS}^3(\\\\mathbf{V}^4, \\\\boldsymbol{V}_4, \\\\mathbf{R})$. We use this\\nprojective model of $\\\\mathbf{H}^2\\\\!\\\\times\\\\!\\\\mathbf{R}$ to compute and visualize\\nthe locally optimal geodesic ball arrangements.\",\"PeriodicalId\":501444,\"journal\":{\"name\":\"arXiv - MATH - Metric Geometry\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Metric Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Metric Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们展示了由螺旋运动群产生的$\mathbf{H}^2\!\times\!\mathbf{R}$几何中最密集的测地全等球包装配置的新纪录。这些群是从 $\mathbf{H}^2$ 上的旋转群和实纤方向 $\mathbf{R}$ 上的一些平移分量的直积派生出来的,这些平移分量可以通过相应的弗罗贝尼斯全等来确定。此外,我们还开发了一种程序,用于确定与所考虑的螺旋运动组相关的最密集大地球填料配置的最佳半径。在旋转参数为$(2,20,4)$的多向情况下,达到了最高的堆积密度,约为$0.80529$。E. Moln\'{a}r 证明了均质 3 空间可以在投影 3 球$\mathcal{PS}^3(\mathbf{V}^4, \boldsymbol{V}_4, \mathbf{R})$中统一解释。我们使用这个$mathbf{H}^2\!
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New lower bound for the optimal congruent geodesic ball packing density of screw motion groups in $\mathbf{H}^2\!\times\!\mathbf{R}$ space
In this paper, we present a new record for the densest geodesic congruent ball packing configurations in $\mathbf{H}^2\!\times\!\mathbf{R}$ geometry, generated by screw motion groups. These groups are derived from the direct product of rotational groups on $\mathbf{H}^2$ and some translation components on the real fibre direction $\mathbf{R}$ that can be determined by the corresponding Frobenius congruences. Moreover, we developed a procedure to determine the optimal radius for the densest geodesic ball packing configurations related to the considered screw motion groups. The highest packing density, $\approx0.80529$, is achieved by a multi-transitive case given by rotational parameters $(2,20,4)$. E. Moln\'{a}r demonstrated that homogeneous 3-spaces can be uniformly interpreted in the projective 3-sphere $\mathcal{PS}^3(\mathbf{V}^4, \boldsymbol{V}_4, \mathbf{R})$. We use this projective model of $\mathbf{H}^2\!\times\!\mathbf{R}$ to compute and visualize the locally optimal geodesic ball arrangements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信