分子回归的分布学习

Nima Shoghi, Pooya Shoghi, Anuroop Sriram, Abhishek Das
{"title":"分子回归的分布学习","authors":"Nima Shoghi, Pooya Shoghi, Anuroop Sriram, Abhishek Das","doi":"arxiv-2407.20475","DOIUrl":null,"url":null,"abstract":"Using \"soft\" targets to improve model performance has been shown to be\neffective in classification settings, but the usage of soft targets for\nregression is a much less studied topic in machine learning. The existing\nliterature on the usage of soft targets for regression fails to properly assess\nthe method's limitations, and empirical evaluation is quite limited. In this\nwork, we assess the strengths and drawbacks of existing methods when applied to\nmolecular property regression tasks. Our assessment outlines key biases present\nin existing methods and proposes methods to address them, evaluated through\ncareful ablation studies. We leverage these insights to propose Distributional\nMixture of Experts (DMoE): A model-independent, and data-independent method for\nregression which trains a model to predict probability distributions of its\ntargets. Our proposed loss function combines the cross entropy between\npredicted and target distributions and the L1 distance between their expected\nvalues to produce a loss function that is robust to the outlined biases. We\nevaluate the performance of DMoE on different molecular property prediction\ndatasets -- Open Catalyst (OC20), MD17, and QM9 -- across different backbone\nmodel architectures -- SchNet, GemNet, and Graphormer. Our results demonstrate\nthat the proposed method is a promising alternative to classical regression for\nmolecular property prediction tasks, showing improvements over baselines on all\ndatasets and architectures.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution Learning for Molecular Regression\",\"authors\":\"Nima Shoghi, Pooya Shoghi, Anuroop Sriram, Abhishek Das\",\"doi\":\"arxiv-2407.20475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using \\\"soft\\\" targets to improve model performance has been shown to be\\neffective in classification settings, but the usage of soft targets for\\nregression is a much less studied topic in machine learning. The existing\\nliterature on the usage of soft targets for regression fails to properly assess\\nthe method's limitations, and empirical evaluation is quite limited. In this\\nwork, we assess the strengths and drawbacks of existing methods when applied to\\nmolecular property regression tasks. Our assessment outlines key biases present\\nin existing methods and proposes methods to address them, evaluated through\\ncareful ablation studies. We leverage these insights to propose Distributional\\nMixture of Experts (DMoE): A model-independent, and data-independent method for\\nregression which trains a model to predict probability distributions of its\\ntargets. Our proposed loss function combines the cross entropy between\\npredicted and target distributions and the L1 distance between their expected\\nvalues to produce a loss function that is robust to the outlined biases. We\\nevaluate the performance of DMoE on different molecular property prediction\\ndatasets -- Open Catalyst (OC20), MD17, and QM9 -- across different backbone\\nmodel architectures -- SchNet, GemNet, and Graphormer. Our results demonstrate\\nthat the proposed method is a promising alternative to classical regression for\\nmolecular property prediction tasks, showing improvements over baselines on all\\ndatasets and architectures.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在分类设置中使用 "软 "目标来提高模型性能已被证明是有效的,但在机器学习中使用软目标进行回归却是一个研究较少的课题。关于使用软目标进行回归的现有文献未能正确评估该方法的局限性,经验评估也相当有限。在这项工作中,我们评估了现有方法在应用于分子性质回归任务时的优缺点。我们的评估概述了现有方法中存在的主要偏差,并提出了解决这些偏差的方法,通过仔细的消融研究对这些偏差进行了评估。我们利用这些见解提出了分布式专家混合物(DMoE):这是一种独立于模型、独立于数据的回归方法,可训练模型来预测目标的概率分布。我们提出的损失函数结合了预测分布和目标分布之间的交叉熵以及它们的期望值之间的 L1 距离,从而产生了一个对概述偏差具有鲁棒性的损失函数。我们评估了 DMoE 在不同分子性质预测数据集(Open Catalyst (OC20)、MD17 和 QM9)上的性能,以及在不同骨架模型架构(SchNet、GemNet 和 Graphormer)上的性能。我们的研究结果表明,所提出的方法是经典回归法分子性质预测任务的一个很有前途的替代方法,在所有数据集和架构上都比基线方法有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution Learning for Molecular Regression
Using "soft" targets to improve model performance has been shown to be effective in classification settings, but the usage of soft targets for regression is a much less studied topic in machine learning. The existing literature on the usage of soft targets for regression fails to properly assess the method's limitations, and empirical evaluation is quite limited. In this work, we assess the strengths and drawbacks of existing methods when applied to molecular property regression tasks. Our assessment outlines key biases present in existing methods and proposes methods to address them, evaluated through careful ablation studies. We leverage these insights to propose Distributional Mixture of Experts (DMoE): A model-independent, and data-independent method for regression which trains a model to predict probability distributions of its targets. Our proposed loss function combines the cross entropy between predicted and target distributions and the L1 distance between their expected values to produce a loss function that is robust to the outlined biases. We evaluate the performance of DMoE on different molecular property prediction datasets -- Open Catalyst (OC20), MD17, and QM9 -- across different backbone model architectures -- SchNet, GemNet, and Graphormer. Our results demonstrate that the proposed method is a promising alternative to classical regression for molecular property prediction tasks, showing improvements over baselines on all datasets and architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信