一些有限群的超交换图谱

IF 2.6 3区 数学
Sandeep Dalal, Sanjay Mukherjee, Kamal Lochan Patra
{"title":"一些有限群的超交换图谱","authors":"Sandeep Dalal, Sanjay Mukherjee, Kamal Lochan Patra","doi":"10.1007/s40314-024-02859-4","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Gamma \\)</span> be a simple finite graph with vertex set <span>\\(V(\\Gamma )\\)</span> and edge set <span>\\(E(\\Gamma )\\)</span>. Let <span>\\(\\mathcal {R}\\)</span> be an equivalence relation on <span>\\(V(\\Gamma )\\)</span>. The <span>\\(\\mathcal {R}\\)</span>-super <span>\\(\\Gamma \\)</span> graph <span>\\(\\Gamma ^{\\mathcal {R}}\\)</span> is a simple graph with vertex set <span>\\(V(\\Gamma )\\)</span> and two distinct vertices are adjacent if either they are in the same <span>\\(\\mathcal {R}\\)</span>-equivalence class or there are elements in their respective <span>\\(\\mathcal {R}\\)</span>-equivalence classes that are adjacent in the original graph <span>\\(\\Gamma \\)</span>. We first show that <span>\\(\\Gamma ^{\\mathcal {R}}\\)</span> is a generalized join of some complete graphs and using this we obtain the adjacency and Laplacian spectrum of conjugacy super commuting graphs and order super commuting graphs of dihedral group <span>\\(D_{2n}\\; (n\\ge 3)\\)</span>, generalized quaternion group <span>\\(Q_{4m} \\;(m\\ge 2)\\)</span> and the nonabelian group <span>\\(\\mathbb {Z}_p \\rtimes \\mathbb {Z}_q\\)</span> of order <i>pq</i>, where <i>p</i> and <i>q</i> are distinct primes with <span>\\(q|(p-1)\\)</span>.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"48 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrum of super commuting graphs of some finite groups\",\"authors\":\"Sandeep Dalal, Sanjay Mukherjee, Kamal Lochan Patra\",\"doi\":\"10.1007/s40314-024-02859-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\Gamma \\\\)</span> be a simple finite graph with vertex set <span>\\\\(V(\\\\Gamma )\\\\)</span> and edge set <span>\\\\(E(\\\\Gamma )\\\\)</span>. Let <span>\\\\(\\\\mathcal {R}\\\\)</span> be an equivalence relation on <span>\\\\(V(\\\\Gamma )\\\\)</span>. The <span>\\\\(\\\\mathcal {R}\\\\)</span>-super <span>\\\\(\\\\Gamma \\\\)</span> graph <span>\\\\(\\\\Gamma ^{\\\\mathcal {R}}\\\\)</span> is a simple graph with vertex set <span>\\\\(V(\\\\Gamma )\\\\)</span> and two distinct vertices are adjacent if either they are in the same <span>\\\\(\\\\mathcal {R}\\\\)</span>-equivalence class or there are elements in their respective <span>\\\\(\\\\mathcal {R}\\\\)</span>-equivalence classes that are adjacent in the original graph <span>\\\\(\\\\Gamma \\\\)</span>. We first show that <span>\\\\(\\\\Gamma ^{\\\\mathcal {R}}\\\\)</span> is a generalized join of some complete graphs and using this we obtain the adjacency and Laplacian spectrum of conjugacy super commuting graphs and order super commuting graphs of dihedral group <span>\\\\(D_{2n}\\\\; (n\\\\ge 3)\\\\)</span>, generalized quaternion group <span>\\\\(Q_{4m} \\\\;(m\\\\ge 2)\\\\)</span> and the nonabelian group <span>\\\\(\\\\mathbb {Z}_p \\\\rtimes \\\\mathbb {Z}_q\\\\)</span> of order <i>pq</i>, where <i>p</i> and <i>q</i> are distinct primes with <span>\\\\(q|(p-1)\\\\)</span>.</p>\",\"PeriodicalId\":51278,\"journal\":{\"name\":\"Computational and Applied Mathematics\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40314-024-02859-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02859-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\Gamma \) 是一个简单的有限图,它有顶点集 \(V(\Gamma )\) 和边集 \(E(\Gamma )\).让 \(\mathcal {R}\) 是 \(V(\Gamma )\) 上的等价关系。\(\mathcal {R}\)-super \(\Gamma \)图 \(\Gamma ^{\mathcal {R}\}) 是一个具有顶点集 \(V(\Gamma )\) 的简单图,如果两个不同的顶点在同一个 \(\mathcal {R}\)- 等价类中,或者在同一个 \(\mathcal {R}\)- 等价类中有元素,那么这两个顶点就是相邻的。等价类中,或者它们各自的等价类中有元素在原始图 \(\Gamma \)中是相邻的。我们首先证明了 \(\Gamma ^{mathcal {R}}\) 是一些完整图的广义连接,并利用这一点得到了共轭超换向图的邻接谱和拉普拉斯谱,以及二面体群 \(D_{2n}\; (n\ge 3)\) 的阶超换向图、广义四元组 \(Q_{4m}\; (m\ge 2)\) 的阶超换向图的邻接谱和拉普拉斯谱。\和阶为 pq 的无标注群 (\mathbb {Z}_p \rtimes \mathbb {Z}_q\),其中 p 和 q 是不同的素数,具有 \(q|(p-1)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectrum of super commuting graphs of some finite groups

Let \(\Gamma \) be a simple finite graph with vertex set \(V(\Gamma )\) and edge set \(E(\Gamma )\). Let \(\mathcal {R}\) be an equivalence relation on \(V(\Gamma )\). The \(\mathcal {R}\)-super \(\Gamma \) graph \(\Gamma ^{\mathcal {R}}\) is a simple graph with vertex set \(V(\Gamma )\) and two distinct vertices are adjacent if either they are in the same \(\mathcal {R}\)-equivalence class or there are elements in their respective \(\mathcal {R}\)-equivalence classes that are adjacent in the original graph \(\Gamma \). We first show that \(\Gamma ^{\mathcal {R}}\) is a generalized join of some complete graphs and using this we obtain the adjacency and Laplacian spectrum of conjugacy super commuting graphs and order super commuting graphs of dihedral group \(D_{2n}\; (n\ge 3)\), generalized quaternion group \(Q_{4m} \;(m\ge 2)\) and the nonabelian group \(\mathbb {Z}_p \rtimes \mathbb {Z}_q\) of order pq, where p and q are distinct primes with \(q|(p-1)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信