{"title":"奇异扰动 Volterra 迟滞积分微分方程的巴赫瓦洛夫型网格上的二阶差分方案","authors":"Yige Liao, Xianbing Luo, Li-Bin Liu","doi":"10.1007/s40314-024-02873-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a second order parameter-uniform numerical method for a singularly perturbed Volterra delay-integro-differential equation on a Bakhvalov-type mesh. The equation is discretized by using the variable two-step backward differentiation formula of the first derivative term and the trapezoidal formula of the integral term. The stability and convergence of the numerical method in the discrete maximum norm are proved. Finally, the theoretical results are verified by some numerical experiments.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"130 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A second order difference scheme on a Bakhvalov-type mesh for the singularly perturbed Volterra delay-integro-differential equation\",\"authors\":\"Yige Liao, Xianbing Luo, Li-Bin Liu\",\"doi\":\"10.1007/s40314-024-02873-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present a second order parameter-uniform numerical method for a singularly perturbed Volterra delay-integro-differential equation on a Bakhvalov-type mesh. The equation is discretized by using the variable two-step backward differentiation formula of the first derivative term and the trapezoidal formula of the integral term. The stability and convergence of the numerical method in the discrete maximum norm are proved. Finally, the theoretical results are verified by some numerical experiments.</p>\",\"PeriodicalId\":51278,\"journal\":{\"name\":\"Computational and Applied Mathematics\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40314-024-02873-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02873-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A second order difference scheme on a Bakhvalov-type mesh for the singularly perturbed Volterra delay-integro-differential equation
In this paper, we present a second order parameter-uniform numerical method for a singularly perturbed Volterra delay-integro-differential equation on a Bakhvalov-type mesh. The equation is discretized by using the variable two-step backward differentiation formula of the first derivative term and the trapezoidal formula of the integral term. The stability and convergence of the numerical method in the discrete maximum norm are proved. Finally, the theoretical results are verified by some numerical experiments.
期刊介绍:
Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics).
The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.