帕斯卡矩阵、共轭三对角算子和傅立叶代数

W. Riley Casper, Ignacio Zurrian
{"title":"帕斯卡矩阵、共轭三对角算子和傅立叶代数","authors":"W. Riley Casper, Ignacio Zurrian","doi":"arxiv-2407.21680","DOIUrl":null,"url":null,"abstract":"We consider the (symmetric) Pascal matrix, in its finite and infinite\nversions, and prove the existence of symmetric tridiagonal matrices commuting\nwith it by giving explicit expressions for these commuting matrices. This is\nachieved by studying the associated Fourier algebra, which as a byproduct,\nallows us to show that all the linear relations of a certain general form for\nthe entries of the Pascal matrix arise from only three basic relations. We also\nshow that pairs of eigenvectors of the tridiagonal matrix define a natural\neigenbasis for the binomial transform. Lastly, we show that the commuting\ntridiagonal matrices provide a numerically stable means of diagonalizing the\nPascal matrix.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Pascal Matrix, Commuting Tridiagonal Operators and Fourier Algebras\",\"authors\":\"W. Riley Casper, Ignacio Zurrian\",\"doi\":\"arxiv-2407.21680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the (symmetric) Pascal matrix, in its finite and infinite\\nversions, and prove the existence of symmetric tridiagonal matrices commuting\\nwith it by giving explicit expressions for these commuting matrices. This is\\nachieved by studying the associated Fourier algebra, which as a byproduct,\\nallows us to show that all the linear relations of a certain general form for\\nthe entries of the Pascal matrix arise from only three basic relations. We also\\nshow that pairs of eigenvectors of the tridiagonal matrix define a natural\\neigenbasis for the binomial transform. Lastly, we show that the commuting\\ntridiagonal matrices provide a numerically stable means of diagonalizing the\\nPascal matrix.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了帕斯卡(对称)矩阵的有限和无限变形,并通过给出这些换向矩阵的明确表达式,证明了与之换向的对称三对角矩阵的存在。通过研究相关的傅立叶代数,我们可以证明帕斯卡矩阵条目的所有一般形式的线性关系都来自三个基本关系。我们还证明,三对角矩阵的特征向量对定义了二项式变换的自然特征基础。最后,我们证明了共轭对角矩阵为帕斯卡矩阵的对角化提供了一种数值上稳定的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Pascal Matrix, Commuting Tridiagonal Operators and Fourier Algebras
We consider the (symmetric) Pascal matrix, in its finite and infinite versions, and prove the existence of symmetric tridiagonal matrices commuting with it by giving explicit expressions for these commuting matrices. This is achieved by studying the associated Fourier algebra, which as a byproduct, allows us to show that all the linear relations of a certain general form for the entries of the Pascal matrix arise from only three basic relations. We also show that pairs of eigenvectors of the tridiagonal matrix define a natural eigenbasis for the binomial transform. Lastly, we show that the commuting tridiagonal matrices provide a numerically stable means of diagonalizing the Pascal matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信