{"title":"修正的局部韦尔定律和 $δ'$ 耦合条件的光谱比较结果","authors":"Patrizio Bifulco, Joachim Kerner","doi":"arxiv-2407.21719","DOIUrl":null,"url":null,"abstract":"We study Schr\\\"odinger operators on compact finite metric graphs subject to\n$\\delta'$-coupling conditions. Based on a novel modified local Weyl law, we\nderive an explicit expression for the limiting mean eigenvalue distance of two\ndifferent self-adjoint realisations on a given graph. Furthermore, using this\nspectral comparison result, we also study the limiting mean eigenvalue distance\ncomparing $\\delta'$-coupling conditions to so-called anti-Kirchhoff conditions,\nshowing divergence and thereby confirming a numerical observation in\n[arXiv:2212.12531]. .","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"212 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified local Weyl law and spectral comparison results for $δ'$-coupling conditions\",\"authors\":\"Patrizio Bifulco, Joachim Kerner\",\"doi\":\"arxiv-2407.21719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Schr\\\\\\\"odinger operators on compact finite metric graphs subject to\\n$\\\\delta'$-coupling conditions. Based on a novel modified local Weyl law, we\\nderive an explicit expression for the limiting mean eigenvalue distance of two\\ndifferent self-adjoint realisations on a given graph. Furthermore, using this\\nspectral comparison result, we also study the limiting mean eigenvalue distance\\ncomparing $\\\\delta'$-coupling conditions to so-called anti-Kirchhoff conditions,\\nshowing divergence and thereby confirming a numerical observation in\\n[arXiv:2212.12531]. .\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"212 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A modified local Weyl law and spectral comparison results for $δ'$-coupling conditions
We study Schr\"odinger operators on compact finite metric graphs subject to
$\delta'$-coupling conditions. Based on a novel modified local Weyl law, we
derive an explicit expression for the limiting mean eigenvalue distance of two
different self-adjoint realisations on a given graph. Furthermore, using this
spectral comparison result, we also study the limiting mean eigenvalue distance
comparing $\delta'$-coupling conditions to so-called anti-Kirchhoff conditions,
showing divergence and thereby confirming a numerical observation in
[arXiv:2212.12531]. .