修正的局部韦尔定律和 $δ'$ 耦合条件的光谱比较结果

Patrizio Bifulco, Joachim Kerner
{"title":"修正的局部韦尔定律和 $δ'$ 耦合条件的光谱比较结果","authors":"Patrizio Bifulco, Joachim Kerner","doi":"arxiv-2407.21719","DOIUrl":null,"url":null,"abstract":"We study Schr\\\"odinger operators on compact finite metric graphs subject to\n$\\delta'$-coupling conditions. Based on a novel modified local Weyl law, we\nderive an explicit expression for the limiting mean eigenvalue distance of two\ndifferent self-adjoint realisations on a given graph. Furthermore, using this\nspectral comparison result, we also study the limiting mean eigenvalue distance\ncomparing $\\delta'$-coupling conditions to so-called anti-Kirchhoff conditions,\nshowing divergence and thereby confirming a numerical observation in\n[arXiv:2212.12531]. .","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"212 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified local Weyl law and spectral comparison results for $δ'$-coupling conditions\",\"authors\":\"Patrizio Bifulco, Joachim Kerner\",\"doi\":\"arxiv-2407.21719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Schr\\\\\\\"odinger operators on compact finite metric graphs subject to\\n$\\\\delta'$-coupling conditions. Based on a novel modified local Weyl law, we\\nderive an explicit expression for the limiting mean eigenvalue distance of two\\ndifferent self-adjoint realisations on a given graph. Furthermore, using this\\nspectral comparison result, we also study the limiting mean eigenvalue distance\\ncomparing $\\\\delta'$-coupling conditions to so-called anti-Kirchhoff conditions,\\nshowing divergence and thereby confirming a numerical observation in\\n[arXiv:2212.12531]. .\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"212 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了紧凑有限度量图上受(delta'$)耦合条件限制的薛定谔算子。基于一个新颖的修正局部韦尔定律,我们得出了给定图上两个不同自相关实现的极限平均特征值距离的明确表达式。此外,利用这一谱系比较结果,我们还研究了$\delta'$耦合条件与所谓的反基尔霍夫条件的极限平均特征值距离比较,显示了分歧,从而证实了[arXiv:2212.12531]中的数值观测。.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified local Weyl law and spectral comparison results for $δ'$-coupling conditions
We study Schr\"odinger operators on compact finite metric graphs subject to $\delta'$-coupling conditions. Based on a novel modified local Weyl law, we derive an explicit expression for the limiting mean eigenvalue distance of two different self-adjoint realisations on a given graph. Furthermore, using this spectral comparison result, we also study the limiting mean eigenvalue distance comparing $\delta'$-coupling conditions to so-called anti-Kirchhoff conditions, showing divergence and thereby confirming a numerical observation in [arXiv:2212.12531]. .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信