{"title":"同质完全集包装维度上的准对称最小性","authors":"Shishuang Liu, Yanzhe Li, Jiaojiao Yang","doi":"arxiv-2407.20562","DOIUrl":null,"url":null,"abstract":"In this paper, we study the quasisymmetric packing minimality of homogeneous\nperfect sets, and obtain that a special class of homogeneous perfect sets with\n$\\operatorname{dim}_{P}E=1$ is quasisymmetrically packing minimal.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasisymmetric minimality on packing dimension for homogeneous perfect sets\",\"authors\":\"Shishuang Liu, Yanzhe Li, Jiaojiao Yang\",\"doi\":\"arxiv-2407.20562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the quasisymmetric packing minimality of homogeneous\\nperfect sets, and obtain that a special class of homogeneous perfect sets with\\n$\\\\operatorname{dim}_{P}E=1$ is quasisymmetrically packing minimal.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quasisymmetric minimality on packing dimension for homogeneous perfect sets
In this paper, we study the quasisymmetric packing minimality of homogeneous
perfect sets, and obtain that a special class of homogeneous perfect sets with
$\operatorname{dim}_{P}E=1$ is quasisymmetrically packing minimal.